
Nearest neighbor methods

Philip M. Dixon

Volume 3, pp 1370–1383

in

Encyclopedia of Environmetrics
(ISBN 0471 899976)

Edited by

Abdel H. El-Shaarawi and Walter W. Piegorsch

 John Wiley & Sons, Ltd, Chichester, 2002



Nearest neighbor methods

Nearest neighbor (NN) methods include at least six
different groups of statistical methods. All have in
common the idea that some aspect of the similarity
between a point and its NN can be used to make use-
ful inferences. In some cases, the similarity is the
distance between the point and its NN; in others,
the appropriate similarity is based on other identi-
fying characteristics of the points. I will discuss in
detail NN methods for spatial point processes and
field experiments because these are commonly used
in biology and environmetrics. I will very briefly
discuss NN designs for field experiments, in which
each pair of treatments occurs as neighbors equally
frequently. I will not discuss NN estimates of proba-
bility density functions (pdfs) [23], NN methods for
discrimination orclassification [59], or NN linkage
(i.e. simple linkage) in hierarchical clustering [32,
pp. 57–60]. Although these last three methods have
been applied to environmetric data, they are much
more general.

Nearest Neighbor Methods for Spatial
Point Processes

Spatial point process data describe the locations of
‘interesting’ events (see Point processes, spatial)
and (possibly) some information about each event.
Some examples include locations of tree trunks [52],
locations of bird nests [11], locations of pottery
shards, and locations of cancer cases [20]. I will
focus on the most common case where the location
is recorded in two dimensions (x, y). Similar tech-
niques can be used for three-dimensional data (e.g.
locations of galaxies in space) or one-dimensional
data (e.g. nesting sites along a coastline or along a
riverbank). Usually, the locations of all events in a
defined area are observed (completely mapped data),
but occasionally only a subset of locations is observed
(sparsely sampled data). Univariate point process data
include only the locations of the events; marked point
process data include additional information about the
event at each location [65]. For example, the species
may be recorded for each tree, some cultural identi-
fication may be recorded for each pottery shard, and
nest success or nest failure may be recorded for each
bird nest.

Location or marked location data can be used to
answer many different sorts of questions. The scien-
tific context for a question depends on the area of
application, but the questions can be grouped into
general categories. One very common category of
question concerns the spatial pattern of the obser-
vations. Are the locations spatially clustered? Do
they tend to be regularly distributed, or are they
random (i.e a realization of a homogeneousPois-
son process)? A second common set of questions
concerns the relationships between different types of
events in a marked point process. Do two different
species of tree tend to occur together? Are locations
of cancer cases more clustered than a random sub-
set of a control group (see Disease mapping)? A
third set of questions deals with the density (num-
ber of events per unit area). What is the average
density of trees in an area? What does a map of
density look like? Methods to answer each of these
types of question are discussed in the following
sections.

Theoretical treatments of NN methods for spa-
tial point patterns can be found in [18], [25], [58]
and [65]. Applications of NN methods can be found
in many articles and books, including [40], [53], [64]
and [66].

Describing and Testing Spatial Patterns
Using Completely Mapped Data

Describing and testing spatial patterns of locations
has a long history. Historically, the primary con-
cern was with the question of randomness [1, 2, 15,
48]. Are locations randomly distributed throughout
the study area (i.e. are the locations a realization of
a Poisson process with homogeneous intensity), or
do the locations indicate some structure (i.e. clus-
tering or repulsion between locations)? Because of
the many connotations of randomness and the impor-
tance of a homogeneous Poisson process as a bench-
mark, it is commonly calledcomplete spatial ran-
domness(CSR).

In this section I will describe NN tests based
on completely mapped data. Locations of all events
are recorded in an arbitrary study region. Often,
the study region is square or rectangular, but this
is not a requirement. Tests for the less common
case of sampled data are described in the next
section.
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Tests Based on Mean Nearest Neighbor Distance

The distances between NNs provide information
about the pattern of points. DefineW as the dis-
tance from a randomly chosen event to the nearest
other event in a homogeneous Poisson process with
intensity (expected number of points per unit area;
seePoisson intensity) of �. The pdf and cumulative
distribution function (cdf) of W are

g�w	 D 2�
w exp���
w2	 �1	

G�w	 D 1 � exp���
w2	 �2	

so the mean and the variance ofW are

E�W	 D 1

2�1/2 �3	

and
var�W	 D 4 � 


4
�
�4	

Based on these moments, Clark and Evans [15]
proposed a test of CSR. The conditional moments,
E�Wj O�	 and var�Wj O�	, are calculated by substitut-
ing the observed density,O� (total number of points
divided by the total area of the study region), into
(3) and (4). The observed mean NN distance,w,
is computed by identifying the NN of each point,
finding the distance between NNs, then averag-
ing. Clark and Evans proposed that the standard-
ized mean

ZCE D w � E[Wj O�]

�N�1var[Wj O�]	1/2
�5	

has a standard normal distribution if the process is a
homogeneous Poisson process [15].

TheZCE statistic and the many users of it ignore
two problems: nonindependence of some NN dis-
tances, andedge effects. In a completely mapped
area, many of the distances between NNs are cor-
related. The problem is most severe with reflex-
ive NNs. Two points, A and B, are reflexive NNs
when B is the NN of A, and A is the NN of
B [16]. Other authors have called these ‘isolated
NNs’ [51] or ‘mutual NNs’ [61]. When A and
B are reflexive NNs, each point has the value of
W, which inflates the variance of the mean NN
distance. This problem is not restricted to a few
points. When points exhibit CSR in two dimensions,
approximately 62.15% of the points are reflexive
NNs [16].

Edge effects arise because the distribution ofW
(2) assumes an unbounded area, but the observed
NN distances are calculated from points in a defined
study area. When a point is near the edge of the
study area, it is possible that the true NN is a point
just outside the study area, not a more distant point
that happens to be in the study area. Edge effects
lead to overestimation (positive bias) of the mean
NN distance. Edge effects can be practically impor-
tant; neglecting them can alter conclusions about the
spatial pattern [10].

Edge effects may be minimized by including a
buffer area that surrounds the primary study area [15].
NN distances are calculated only for points in the pri-
mary study area, but locations in the buffer area are
available as potential NNs. With a sufficiently large
buffer area, this approach can eliminate edge effects,
but it is wasteful since an appropriately large buffer
area may contain many locations.

Using simulations, Donnelly [31] derived edge-
corrected approximations to E�Wj O�	 and var�wj O�	
when the study region is rectangular:

E�Wj O�	 ³ 0.5
(
A

N

)1/2

C 0.0514
P

N
C 0.041

P

N

3/2
�6	

var�wj O�	 ³ 0.0703
A

N2 C 0.037
PA1/2

N5/2 �7	

whereN is the observed number of points,A is the
area of the study region, andP is the total perime-
ter of the study region. These approximations can be
used to test CSR by substituting them into (5), then
comparing the resultingz -statistic to a standard nor-
mal distribution. This test has reasonable power to
detect departures from CSR [57].

One difficulty with tests based on the mean NN
distance is that the mean is just a single summary of
the pattern. Two point patterns may have the same
mean NN distance, but one exhibits CSR and the
other does not. One such pattern would have a few
patches of clustered points and an appropriate num-
ber of widely scattered individuals. The points in
the clusters have small NN distances, but the widely
scattered individuals have large NN distances. With
the appropriate mix of clustered and scattered points,
the mean NN distance could be exactly that given
by (3).
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Distribution of Nearest Neighbor Distances

An alternative is to consider the entire distribu-
tion, G�w	, of NN distance [24]. CSR can be tested
by comparing the observed distribution function
of NN distances, Ĝ�w	, to the theoretical cdf
(2). A variety of test statistics have been sug-
gested, including Kolmogorov–Smirnov type statis-
tics: supw jĜ�w	 � G�w	j, Cramer–von Mises type
statistics:

∫
w[Ĝ�w	 � G�w	]2, or Anderson–Darling

type statistics:
∫
w[Ĝ�w	 � G�w	]2/[G�w	�1 � G�w	].

The Kolmogorov–Smirnov statistic seems to be the
most commonly used. The usual critical values for
the one-sample Kolmogorov–Smirnov test are not
appropriate here because of nonindependence of
NN distances, especially for reflexive NNs, as dis-
cussed above. Instead, a Monte Carlo test must be
used [28].

The Monte Carlo approach computes the˛-level
critical value or theP value by simulation (seeSim-
ulation and Monte Carlo methods). The number of
points,N, is fixed at the observed number.N ran-
dom locations are simulated as a realization of CSR
in the study area, and the Kolmogorov–Smirnov (or
other) test statistic is computed. This is repeatedR
times to giveR values from the sampling distribution
of the test statistic under the null hypothesis of CSR.
The one-sided̨ -level critical value is thę �R C 1	th
largest value from the sampling distribution. TheP
value is computed as (1C number of random values
larger than the observed value)/�1 C R	 [5].

Edge effects complicate the estimation ofĜ�w	.
One solution is to include a border strip, as dis-
cussed above, but this may ignore a considerable
amount of information. A variety of edge-corrected
estimators ofG�w	 has been proposed; four of them
are summarized in [18, pp. 613–614, 637–638].
The edge-corrected cdf can also be estimated by a
Kaplan–Meier estimator [3]. Edge corrections reduce
the bias in the estimator, but they increase the
sampling variance [36].

Although edge-corrected estimators are needed if
the observed distribution function is to be compared
with the theoretical distribution function under CSR
(2) they may not be needed for a Monte Carlo
test of CSR. A more powerful test of CSR is to
use a nonedge-corrected estimator (2) and compare
the biased estimate of̂G�w	 to the biased mean,
G�w	, under CSR [36]. The biased meanG�w	
and pointwise prediction intervals are computed by

simulation. Values ofĜ�w	 above the simulated
mean indicate clustering of points (an excess of
short distances to NNs). Values of̂G�w	 below the
simulated mean indicate regularity (few to no points
with short distances to NNs).

Graphical diagnostics based on the empirical dis-
tribution of NN distances provide additional infor-
mation about the spatial process. The most common
graphical diagnostic is a quantile–quantile plot of
eitherG�w	 or G�w	 on thex-axis andĜ�w	 on the
y-axis. G�w	 would be used when the object is to
evaluate the fit of the theoretical NN distribution;
G�w	 would be used when the theoretical NN dis-
tribution is unknown and the object is to evaluate the
fit to a process that can be simulated.

Monte Carlo simulation of the spatial process
provides both an estimate ofG�w	 and the sampling
distribution ofĜ�w	 conditional on a specific spatial
process.Quantiles of the sampling distribution of
Ĝ�w	 can be calculated for interesting distances,
w. If the spatial process is simulated many times
(e.g. 199 or 999), the quantiles can be estimated
relatively precisely. The 0.05 and 0.95 quantiles can
be approximated by the minimum and maximum of
R D 19 simulations. The 0.01 and 0.99 quantiles can
be approximated by the minimum and maximum of
R D 99 simulations.

The simulated mean and quantiles ofĜ�w	 are
plotted against the observed̂G�w	. If the observed
curve of Ĝ�w	 falls entirely between the lower and
upper bounds, then there is no evidence against
the null hypothesis (e.g. that the locations are a
realization of CSR). An excursion outside the bounds
indicates a departure from CSR. If the observed
Ĝ�w	 falls below the lower bound at short distances,
there are too few NNs at short distances, which is
consistent with a regular pattern, or one where there is
inhibition of nearby points. If the observed̂G�w	 lies
above the upper bound at short distances, there are
too many NNs at short distances, which is consistent
with a clustered process.

The Monte Carlo approach is not limited to testing
CSR. It can be used to evaluate the fit of any process
that can be simulated. For example, a set of locations
might be compared with aPoisson cluster process
or a Strauss process [25, 31].

NN methods have been extended in a variety of
ways. Tests can be based on other functions of the
NN distances (e.g. squared [12] or smallest [62] NN
distances), but such tests have not been widely used.
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Distances to second NN, or the third NN, or perhaps
an even further neighbor have been suggested as a
way to look at patterns on a larger scale. The set of
cdfs of distance to the NN, distance to the second
NN, . . . , distance tonth NN is related toRipley’s K
function, another commonly used method to analyze
spatial patterns [56; 65, p. 267]. Finally, the distance
between a randomly chosen point and the nearest
event also provides information about the spatial
pattern [25, 66].

Point–Event Distances

The point–event distribution,F�x	, considers the
distance between a randomly chosen location (not the
location of an event) and the nearest event. This can
be estimated by choosingm locations in the study
area and computing the distance from each location
to its NN. As with G�w	, edge effects complicate
estimation of the cdf. An edge-corrected estimator is

OFR�x	 D number of�xi � x, di > x	

number of�di > x	
�8	

where xi is the distance between a point and its
neighboring event, anddi is the distance between a
point and its nearest boundary. When the events are
a realization of CSR,X, the point–event distance,
andW, the NN distance, have the same distribution,
soF�x	 D 1 � exp���
x2	. However, the effects of
deviations from randomness onF(x) are opposite to
those onG�w	. Values of F̂�x	 above the expected
value indicate regularity. Values below the expected
value indicate clustering.

The NN distance distribution, point–event dis-
tance distribution, and Ripley’sK function provide
different insights into the spatial pattern. The NN dis-
tribution function, Ĝ�w	, is slightly more powerful
at detecting departures from CSR in the direction of
regularity [24]. The point–event distribution function
provides information about the empty space between
points. It appears to be the more powerful method
for detecting departures in the direction of cluster-
ing [25, 66]. Ripley’s K function simultaneously
examines the spatial pattern at many distance scales
and is now the most popular approach for completely
mapped data. However, it is possible to construct
point processes with the sameG�w	 but a differ-
ent Ripley’sK�t	 function [65, p. 267]. Conversely,
Baddeley and Silverman [4] illustrate two processes
with the same Ripley’sK function but very different

NN distance distributions and point–event distance
distributions.

Are Events Points or Circles?

All the distributional theory of the previous sections
assumes that events occupy no space. Treating events
as points assumes that it is possible for two events
(e.g. locations of tree trunks or bird nests) to be an
infinitesimally small distance from each other. The
point assumption is reasonable when the area of the
events is small relative to the spacing between the
events. The assumption is likely to be appropriate for
bird nests (generally small) or tree trunks (generally
low density), but not for ant nests (large size relative
to the density of nests in an area). If events are
incorrectly assumed to be points, the analysis of
the spatial pattern indicates a tendency to regularity
because two events do not occur within a small
distance (the physical size of the event) of each other.

An approximation to the mean event–event dis-
tance,W, for nonoverlapping circles under CSR is

W ³ d C exp���
d2	[1 � �2�
d	1/2]p
�

�9	

whered and� are, respectively, the diameter of the
circles and the number of circles per unit area [63].
In (9) a low intensity,�, and a small and constant
diameter,d, are assumed. The distribution,G�w	,
of NN distances for nonoverlapping circles can be
estimated by Monte Carlo simulation by using a
sequential inhibition algorithm [24]. The distribution
of event–event distances can be complicated when
the circles are large or the density is high. For
example, it may not be possible to fit the required
number of large circles into the study area.

Algorithms and Computing

The simplest way to compute NN distances is by
direct enumeration; that is, computing the distances
between all pairs of points, then reporting the smallest
distance for each point as the NN distance. For a
large number of points, this becomes impractical,
and more efficient algorithms have been developed
to approach the problem. Possible approaches include
subdividing the region into smaller subregions [47],
computing the Direchlettessellation (also known as
the Voronoi tessellation, Thiessen tessellation, and
other less common names [66, p. 96]) and using that
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to identify NNs, or computing the quadtree, a sorted
matrix of locations that simplifies the search for NNs,
and using that to identify NNs [35]. Murtagh [47]
reviews the properties of these algorithms.

Functions or procedures for NN spatial analy-
sis are included in few statistical programs, but
direct enumeration is very simple to program when
needed. Packages of functions for spatial point pattern
analysis usually include functions for point–point
and point–event analyses. Many of these are S or
S-PLUS libraries, for example Splancs [60], spa-
tial [67], andS + SPATIALSTATS [45].

Example: Trees in a Swamp Hardwood Forest

Figure 1 shows the locations of all 630 trees (stems>
11.5 cm diameter at breast height) and the locations
of 91 cypress trees in a 1 ha plot of swamp hardwood
forest in South Carolina, USA. There are 13 different
tree species in this plot, but over 75% of the
stems are one of three species: black gum (Nyssa
sylvatica), water tupelo (Nyssa aquatica), or bald
cypress (Taxodium distichum). Visually, trees seem
to be scattered randomly throughout the plot, but
cypress trees seem to be clustered in three bands.
NN statistics provide a way to test the hypothesis that
stems are randomly distributed throughout the plot. I
will illustrate tests based on mean NN distance,G�w	,
andF�x	 using the locations of all 630 trees and the
locations of the 91 cypress trees.

For all 630 tree locations, the mean NN distance
is 1.99 m. If 630 points were randomly distributed in
a 200 mð 50 m rectangle, the expected NN distance
is 2.034 m, with astandard error (SE) of 0.044 m,
using Donnelly’s approximations, (6) and (7). There
is no evidence of departure from CSR�z D �0.973
with a two-sidedP value of 0.33). The effect of the
edge corrections is minimal probably because the plot
is large and the NN distance is small. The uncorrected
expected NN distance is 1.992 m, with an SE of
0.042 m, using (3) and (4).

Conclusions using the distribution of NN
distances,Ĝ�w	, are similar. Ĝ�w	 was estimated
without edge corrections, sôG�w	 must be compared
with simulated values, not the theoretical expectation
(2). The observed cdf, the theoretical expected
value (2), and the average simulated cdf are very
similar (Figure 2a), although the observed̂G�w	
is slightly larger than the expected value at short
distances. The differences can be seen more clearly
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or
di

na
te

Figure 1 Marked plot of tree locations in a 50 mð 200 m
plot of hardwood swamp in South Carolina, USA. Circles
are locations of cypress trees, squares are locations of black
gum trees, and dots are locations of any other species

if 1 � exp���
w2	 (2) is subtracted from all curves
(Figure 2b). AlthoughĜ�w	 is larger than both the
theoretical expected value and the average simulated
value, it lies within the pointwise 95% confidence
limits. None of the three summary statistics
(Kolmogorov–Smirnov, Cramer–von Mises, or



6 Nearest neighbor methods

Distance (m)

cd
f

1 2 3 4
0

2

4

6

8

(a) Distance (m)

cd
f

1 2 3 4

–4

–2

0

4

2

(b)

Distance (m)
5 10 15

0

2

4

6

8

10

(c)

cd
f

5 10 15

Distance (m)

5

0

10

–10

–5

15

–15

(d)

cd
f

Figure 2 Cdf plots of NN distances for all trees and for cypress trees only, in a 50 mð 200 m plot (see Figure 1).
(a) All trees: comparison of observed cdf (solid line), theoretical cdf (dotted line) and average simulated cdf under CSR
(dashed line). (b) All trees: comparison of observed cdf (solid line) and average simulated cdf (dashed line). The dotted
lines represent the pointwise 0.025 and 0.975 quantiles of the simulated cdf under CSR. For clarity, the theoretical cdf is
subtracted from all plotted cdfs. (c) Cypress trees only: comparison of observed cdf (solid line), theoretical cdf (dotted line)
and average simulated cdf under CSR (dashed line). (d) Cypress trees only: comparison of observed cdf (solid line) and
average simulated cdf (dashed line). The dotted lines represent the pointwise 0.025 and 0.975 quantiles of the simulated
cdf under CSR. For clarity, the theoretical cdf is subtracted from all plotted cdfs

Anderson–Darling) is significant at̨ D 0.05. For
example, the observed Kolmogorov–Smirnov test
statistic of 0.044 is less than the simulated 90th
percentile, 0.052. The estimatedP values for
the Kolmogorov–Smirnov, Cramer–von Mises, and
Anderson–Darling test statistics are 0.19, 0.31, and
0.40, respectively.

In contrast, the distribution of point–event dis-
tances suggests there is some clustering of tree loca-
tions. The observed̂F�x	 is below the theoretical
and average simulated curves (Figure 3a, b) and
outside the pointwise 95% confidence bounds at
large distances (Figure 3b). BecauseF̂�x	 falls below
the expected values, distances from randomly cho-
sen points are stochastically greater than expected
if events exhibited CSR. The greater than expected
abundance of large empty spaces provides evi-
dence of clustering of the events. TheP values
for the Kolmogorov–Smirnov, Cramer–von Mises,
and Anderson–Darling summary statistics range from

0.004 to 0.009. The conclusion of some evidence for
clustering of all tree locations matches the conclusion
using Ripley’sK function.

For the 91 cypress trees, the mean NN distance
is 5.08 m, which is slightly smaller than the edge-
corrected expected distance of 5.55 m, with an SE of
0.33 m. Using the NN distance, there is no evidence
of a nonrandom distribution; thez-statistic is�1.41,
with a two-sidedP value of 0.16. The effect of the
edge corrections is larger when the density of points
is smaller. The uncorrected expected NN distance for
the 91 cypress trees is 5.24 m, with an SE of 0.29 m.

However, the distributions of̂G�w	 and F̂�x	 for
the 91 cypress trees provide evidence of clustering
of cypress trees. There is an unusually large number
of NN distances between 3 m and 7 m (Figures 2c
and 2d). This excess is significant;̂G�w	 is at
or above the pointwise 0.975 quantiles of simu-
lated values (Figure 2d). This excess is consis-
tent with clustering of cypress trees. There are
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Figure 3 Cdf plots of point–event distances for all trees and for cypress trees only, in a 50 mð 200 m plot (see Figure 1).
(a) All trees: comparison of observed cdf (solid line), theoretical cdf (dotted line) and average simulated cdf under CSR
(dashed line). (b) All trees: comparison of observed cdf (solid line) and average simulated cdf (dashed line). The dotted
lines represent the pointwise 0.025 and 0.975 quantiles of the simulated cdf under CSR. For clarity, the theoretical cdf is
subtracted from all plotted cdfs. (c) Cypress trees only: comparison of the observed cdf (solid line), theoretical cdf (dotted
line) and average simulated cdf under CSR (dashed line). (d) Cypress trees only: comparison of observed cdf (solid line)
and average simulated cdf (dashed line). The dotted lines represent the pointwise 0.025 and 0.975 quantiles of the simulated
cdf under CSR. For clarity, the theoretical cdf is subtracted from all plotted cdfs

also significant fewer (at least pointwise) NN dis-
tances at 13 m. All three summary statistics are
significant (Kolmogorov–SmirnovP valueD 0.034,
Cramer–von MisesP valueD 0.007, Anderson–Dar-
ling P valueD 0.011). The point–event distances
are stochastically greater than expected under CSR
(Figures 3c and 3d). The observed distribution,F̂�x	,
lies outside the pointwise 95% confidence bands
for many distances. All three summary statistics are
highly significant�P D 0.001	. The conclusion that
cypress trees are strongly clustered matches that using
Ripley’s K function.

Directed Tests

The tests in the previous section are general tests of
CSR against an unspecified alternative. Other tests
may be more powerful when the alternative is more
specific (e.g. events are associated with specific sites,

or the density of events increases from east to west).
Association between point events and a nonpoint
stochastic process can be tested using the NN distance
from each event to the nearest part of the second
process [7]. However, most directed tests [43, 55,
68] use features other than NN distance.

Describing and Testing Spatial Patterns
with Use of a Sample of Nearest Neighbor
Distances

Although mapped data are often easy to collect, a
statistician might view this as wasteful because of the
high degree of correlation between NN distances (e.g.
the perfect correlation for pairs of reflexive NNs). An
alternative is to measure NN distances only on a ran-
dom sample of individuals. Because the NN distances
are calculated from a simple random sample of points,
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the distributional theory for both the mean NN dis-
tance and the distribution function is much simpler.
Many different tests of CSR have been developed
for use with a random sample of point–event, NN,
or point–event–event distances. These are summa-
rized and evaluated in [66, pp. 59–64] and [18,
pp. 602–614].

The most straightforward way to select a random
sample of NN distances is to enumerate all indi-
viduals in the statistical population, select a simple
random sample of events, and measure the distances
from the selected events to their NNs. This can be
time-consuming and is usually impractical [66]. Enu-
meration can be avoided by clever use of subregions
(described by Byth and Ripley [14]), or by randomly
selecting points (not events). The distance from the
randomly selected point to the nearest event is a
random sample from the distribution of point–event
distances,F�x	, but the distance from that event to
its closest event is not a random sample fromG�w	
because the point–event and event–event distances
are correlated. The distributions of all quantities in
the point–event–event sample when events exhibit
CSR have been derived [17].

An alternative that is easy to implement in the
field is theT-square sample [8], illustrated in [18]
and [66], a modified point–event–event sample. A
point, A, is randomly chosen, and the NN, B, is
found. Then, the study area is divided into two half
planes by a line through B and perpendicular to AB
(hence the name,T-square). Attention is restricted to
the half plane that does not contain point A. The
distance to the NN,Z, of B in that half plane is
measured. When points exhibit CSR,Z and X (the
distance from point A to NN B) are independent,
and the distribution ofZ/

p
2 is the same as the

distribution of NN distances,G�w	 [8].

Estimating Density

A random sample of point to NN distances can be
used to estimate�, the average density of events
in the study area. When events exhibit CSR, the
maximum likelihood estimate is

O� D n

(



n∑
iD1

X2
i

)�1

�10	

where Xi is the distance from a randomly chosen
point i to its NN [46]. An unbiased estimate is [54]:

O�P D �n � 1	

(



n∑
iD1

X2
i

)�1

�11	

Both estimators are very dependent on the CSR
assumption and can be biased if locations are clus-
tered or regularly distributed.

Many other estimators have been proposed. Upton
and Fingleton [66, pp. 118–133] summarize and pro-
vide examples of calculations for many of these.
Byth [13] evaluated the robustness of many estima-
tors to deviations from CSR. She recommended an
estimator,O�T, based on two quantities fromT-square
sampling:X, the distance from point to nearest event,
andZ, the distance to the NN in a half plane:

O�T D n2

[
2
p

2

(
n∑

iD1

Xi

)(
n∑

iD1

Zi

)]�1

�12	

Nearest Neighbor Methods to Examine
Spatial Patterns of More Than One Type
of Point

Additional information about an event is often avail-
able. For example, tree locations might be marked
with the species of tree (a mark with discrete lev-
els) or the size of the tree (a mark with continuous
levels). The methods in the previous sections can
be used to analyze patterns in all events (ignor-
ing the marks) or subgroups of events (e.g. just
species A or just trees larger than 50 cm). How-
ever, other interesting questions could be asked about
the relationship between the two (or more) sets of
locations.

Multivariate spatial point patterns are those where
events can be classified into different types, that is,
the marks are discrete [18, p. 707]. Usually, the
number of different types is small; bivariate pat-
terns, with two types of marks, are the most com-
mon. Some questions that could be asked about
point processes with discrete marks are as fol-
lows:

1. Are the processes that generate locations with
different marks independent?

2. Are marks randomly assigned to locations? Con-
ditional on the observed locations of superposi-
tion of the two marked processes, are the marks
independent?
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3. Are marks segregated? Are locations with one
type of mark surrounded by locations with the
same mark?

These questions about the relationships between pro-
cesses make no assumptions about the marginal pat-
tern of each process. In particular, either process (or
the superposition of processes) may be independent,
clustered, or regularly distributed. The two general
methods to answer these questions are the compar-
ison of distribution functions [39, 44] and the NN
contingency table [30, 52]. Other approaches include
Ripley’s K functions or parametric point process
models.

Define the following multitype extensions of the
point–event and NN distances.Xi is the distance
from a randomly chosen point to the nearest event
with mark i, with cdf Fi�x	. Wij is the distance
from an event with marki to the nearest event
with mark j, with cdf Gij�w	. If the process with
mark i is independent of the process with mark
j, then

Fi�x	 D Gji�x	 �13	

Fj�x	 D Gij�x	 �14	

and Xi and Xj are independent [27, 39]. Note that
property (13) does not imply property (14), so two
tests are needed [39].

For sparsely sampled data, Goodall [39] suggests
a t test of Xi D Xj. Diggle and Cox [27] consider
nonparametric versions of thet test, tests of equality
of distribution, and tests of the correlation between
Xi and Xj. Details and a comparison of the tests
are given in [27]. Analyses of completely mapped
data tend to focus on the comparison of distribution
functions in (13) and (14). Monte Carlo tests are used
because of the nonindependence of point–event and
event–event distances.

Two different simulation methods could be used
in the Monte Carlo test. The choice depends on the
null hypothesis. If the null hypothesis is independence
between marks (question 1, above), then toroidal
shifts or some parametric model should be used to
generate the randomization distribution. If the null
hypothesis is random assignment of marks condi-
tional on the set of events, then random labeling of
events should be used to generate the randomization
distribution. In general, these two hypotheses are not
equivalent and the sampling distributions are not the
same.

Nearest Neighbor Contingency Tables

The NN contingency table focuses on the ecolog-
ically important question of segregation [30, 52].
This table describes marks of events and their NNs,
not the distance between them (Table 1). In sparsely
sampled data, the counts (NAA , NAB, NBA, andNBB)
are independent Poisson random variables or condi-
tionally independent given the row marginal totals
(NA and NB) under the null hypothesis of random
labeling [52]. The hypothesis can be tested with a
traditional 1 degree of freedom (df)!2 test of inde-
pendence [52] (seeCategorical data).

In completely mapped data, the sampling distri-
bution of the counts is different [16]. If events are
randomly labeled, the expected values of the counts
depend only on the number of each type of event
(NA and NB) and the total number of events,N
(Table 2) [30]. The variances and covariances depend
on the number of events of each type, the number of
reflexive NNs, and the number of shared NNs; for
a derivation of the formula, see [30]. The first two
moments of the cell counts can be used to test for
segregation of type A events [NAA > E�NAA 	], test
for segregation of type B events [NBB > E�NBB	],

Table 1 Cell counts in an NN contingency table

Mark of neighbor

Mark of point A B Total

A NAA NAB NA
B NBA NBB NB
Total MA MB N

N is the number of points in the spatial pattern.NA andNB are
the number of type A and type B points.NAA is the number
of type A points with type A NNs.NAB is the number of type
A points with type B NNs.NBA andNBB are the number of
type B points with type A or type B NNs, respectively.MA

andMB are the column sums, i.e. the total number of points
with type A neighbors or type B neighbors, respectively

Table 2 Expected cell counts for NN contin-
gency table for completely mapped data

To:

From: A B

A
NA�NA � 1	

N � 1

NANB

N � 1

B
NBNA

N � 1

NB�NB � 1	

N � 1

See Table 1 for definitions ofM, NA andNB
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or construct an omnibus 2 df!2 test of random
labeling. If the numbers of points are large, then
the distributions of test statistics can be adequately
approximated by asymptotic normal and!2 distri-
butions. If the number of points is small, then the
distributions should be determined by Monte Carlo
simulation.

Patterns withk marks�k > 2	 can be analyzed by
considering all pairs of marks two at a time (using
distance methods or 2ð 2 NN contingency tables),
or by considering thek ð k contingency table. The
expected counts and their variances under random
labeling follow the same form as those for a 2ð 2
contingency table, but there are more possible forms
for the covariance between two counts. Details are
given in [29].

Other approaches that have been suggested for
the analysis of multitype point processes include the
comparison of bivariate Ripley’sK functions [26,
44], empty space methods [44] (comparisons of
point–event distance distributions), and mark corre-
lation functions [65].

Example, Part 2

Cypress and black gum are two of the three abundant
species in the 1-ha plot of swamp forest consid-
ered in Example 1. An interesting ecological question
is whether these two species are spatially segre-
gated; that is, do cypress trees tend to be found near
other cypress trees and do black gum trees tend to
be found near other black gum trees? The marked
plot of locations (Figure 1) suggests that cypress
trees and black gum occur in different clusters. Con-
firming this requires an analysis of the bivariate
spatial pattern. The three tests that will be illus-
trated are the comparisons of cdfs (13–14) [27], the
independence of distances [27], and the NN contin-
gency table [30]. The ecological background suggests
that random labeling is the more appropriate null
hypothesis.

The cdf of distances from randomly chosen points
to the nearest black gum tree,FG�x	, and the cdf
of point–event distances to the nearest cypress tree,
FC�x	, were estimated without edge corrections by
using a randomly located grid of points [14]. The
cdfs of distances from black gum trees to the nearest
cypress tree,GGC�x	, and from cypress trees to the
nearest black gum tree,GCG�x	, were also estimated
without edge corrections. Both species show the same
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Figure 4 Cdf of point–event distances for all trees
and for cypress trees only. (a) Comparison of cdfs of
point to cypress tree distances [FC�x	, dotted line] and
black gum tree to cypress tree distances [GGC�x	, solid
line]. (b) Comparison of cdfs of point to black gum
tree distances [FG�x	, dotted line] and cypress tree to black
gum tree distances [GCG�x	, solid line]. (c) Relationship
between distances from a randomly chosen point to the
nearest cypress tree and nearest black gum tree

pattern. Cypress trees are stochastically further from
black gum trees than from randomly chosen points
(Figure 4a). Also, black gum trees are stochastically
farther from cypress trees than from randomly chosen
points (Figure 4b).
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The observed differences can be compared
with those found under random labeling by using
the Kolmogorov–Smirnov two-sample statistics,
maxjFG�x	 � GCG�x	j and maxjFC�x	 � GGC�x	j,
as the test statistics. The observed maximum
differences are not unusually large (P valueD 0.109
for black gum and 0.083 for cypress). The distance
from a randomly chosen point to the nearest black
gum tree, XG, is negatively correlated with the
distance from the same point to the nearest cypress
tree, XC (Figure 4c; Kendall’s O$ D �0.12, with a
one-sidedP value, by randomization, of 0.001). This
result is consistent with the spatial segregation of the
two species. The different results from the three tests
are consistent with Diggle and Cox’s [27] observation
that the correlation test is more powerful than the
Kolmogorov–Smirnov test for the sparsely sampled
spatial patterns they studied.

The NN contingency table indicates that both
species have an excess of NNs of the same species
(Table 3). The variances of the cell counts are
38.88 for black gum–black gum and 25.55 for
cypress–cypress. TheP values can be computed by
Monte Carlo randomization or by a normal approx-
imation [30]. In either case, the one-sidedP values
are small (0.001 or less) for both species.

Nearest Neighbor Methods for Field
Experiments

A different set of NN methods can be used to ana-
lyze spatially structured field experiments. One of the
most common applications is in agronomic variety
trials, where many treatments are compared by taking
small plots arranged in a rectangular lattice. Tradi-
tional methods of controlling for between-plot hetero-
geneity, such as using a randomized complete block
(RCB) design, may not be very effective because the

Table 3 Observed counts�NO	, expected counts�NE),
and z scores for the cypress tree and black gum tree NN
contingency table

Species of neighbor

Species of
Black gum tree Cypress tree

point NO NE z NO NE z Total

Black gum 149 121.1 4.47 33 60.9�4.47 182
Cypress 43 60.9�3.54 48 30.1 3.54 91
Total 192 81 273

large number of treatments forces the blocks to be
large. NN methods use information from adjacent
plots to adjust for within-block heterogeneity and so
provide more precise estimates of treatment means
and differences. If there is within-plot heterogeneity
on a spatial scale that is larger than a single plot
and smaller than the entire block, then yields from
adjacent plots will be positively correlated. Informa-
tion from neighboring plots can be used to reduce or
remove the unwanted effect of the spatial heterogene-
ity and hence improve the estimate of the treatment
effect. Data from neighboring plots can also be used
to reduce the influence of competition between adja-
cent plots. Each of these approaches will be briefly
discussed below.

Papadakis [49, 50] proposed an analysis of covari-
ance to reduce the effects of small-scale spatial het-
erogeneity in yields. The value of the covariate for
each plot is obtained by averagingresiduals from the
neighboring plots. The choice of neighboring plots
depends on the crop, the plot size and shape, and the
spacing between plots. In many row crops, the neigh-
boring plots are defined as the two adjacent plots in
the row, except that plots at an end of a row have only
one neighbor. In other situations, it may be appropri-
ate to consider four neighbors, which include the two
between-row neighbors. If the spatial heterogeneity is
such that the effects of within-row and between-row
neighbors are quite different, then one could compute
separate covariates for within-row and between-row
neighbors. Once the covariates are computed, treat-
ment effects are re-estimated using an analysis of
covariance. For adjustment in one dimension (e.g.
along crop rows), the model would be

Yi D & C Xi$i C ˇRi C εi �15	

whereYi is the observed yield on theith plot, Ri
is the mean residual on neighbors of theith plot,
ˇ is the spatial dependence parameter,& and $i
are the parameters in the model for the treatment
effects,Xi is the row of the design matrix for the
ith plot, andεi is the residual variability in yields,
which are assumed to be uncorrelated. Whenˇ is
0, observations on adjacent plots are independent;
larger positive values of̌ �ˇ < 1	 correspond to
increasing spatial correlation between neighboring
plots. The observed value of̌ depends on plot
size, plot shape, plot spacing, and the scale of the
spatial heterogeneity. Values are often close to 1 when
plots are small. In the absence of treatments, and
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ignoring edge effects, the Papadakis model implies
that correlations between plot yields have a first-order
autoregressive structure, with corr�Yi, Yj	 D *ji�jj,
whereˇ D 2*/�1 C *2	. Values ofˇ close to 1 imply
that * is also close to 1.

The autoregressive correlation structure implied
by the ad hoc Papadakis model is one exam-
ple of the random field approach to a spatially
designed experiment [6, 18, 73]. Many other mod-
els, including the iterated Papadakis method, the
Wilkinson NN [71] model, the Besag and Kemp-
ton [9] first-order difference models, the Williams
model [69] and the Gleeson–Cullis autoregressive
integrated moving average (ARIMA) models [19, 38]
(seeTime series) correspond to different specifica-
tions of a spatial correlation matrix. Computations
are handled either by a general purpose residual
maximum likelihood (REML) algorithm for linear
mixed effects models [e.g. PROC MIXED inSAS,
lme( ) in S-PLUS], or by specialized software for
a particular model (e.g. TwoD for two-dimensional
Gleeson–Cullis models [37]).

The properties of these methods have been exten-
sively discussed over the past 20 years. Dagnelie [21,
22] provides a relatively recent review and his-
torical summary of the Papadakis model. Wu and
Dutilleul [72] use uniformity trial data to compare
autoregressive models, difference models, and tra-
ditional RCB analyses. The efficiency of a spatial
analysis, relative to an RCB design, is usually greater
than 1.2 and can be as high as 2 [22]. However, it
can give biased estimates of treatment effects [71].
The Papadakis method appears to work best when
there are at least three replicates per treatment, many
treatments (greater than 10), and strong but patchy
spatial heterogeneity [22]. When there is an under-
lying trend, first-order difference models appear to
work well.

Medium-scale spatial heterogeneity usually causes
a positive correlation between adjacent plots. When
there is competition between plots, neighbors can
have a negative effect on the response in adjacent
plots [41]. The Papadakis model (15) can be extended
to estimate treatment-specific competitive effects.
The choice of covariate should be influenced by
biological mechanisms. If competition for sunlight
is important, a reasonable covariate could be the
difference between the mean height of plants in the
plot and the mean height on neighboring plots. If
disease spread is important, a reasonable covariate

could be the mean disease severity on neighboring
plots [42]. The coefficient for the covariate [ˇ in (15)]
estimates the strength of the competitive relationship.

Experimental design for a study that will use some
form of neighbor-adjusted analysis usually focuses on
neighbor balance; that is, ensuring that all pairs of
treatments occur in adjacent plots equally frequently.
Adjacent plots can be defined as only those within
the same row (one-dimensional neighbor-balanced
designs [70]) or as including both those in the same
row and those in the same column (two-dimensional
neighbor-balanced designs [34]). The choice will
depend on the size, shape, and spacing of the plots
and on the biological and physical mechanisms influ-
encing the correlation between plots. Methods for
construction of one-dimensional or two-dimensional
designs can be found in [33], [34], and [70].
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