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Priestley (1981) gives a much more comprehensive account of these random
processes. Chapter 3 of that book is especially relevant, and we must leave the
reader to pursue the matter there.

5.2.2 Bounded models

In our experience bounded variation is more common than unbounded variation,
and the variograms have more varied shapes. In most of these models the
variance has a maximum, which is the a priori variance of the process, known in
geostatistics as the sill variance. The variogram may reach its sill at a finite lag
distance, the range. Alternatively, the variogram may approach its sill asympto-
tically. In some models the semivariance reaches a maximum, only to decrease
again and perhaps fluctuate about its a priori variance. These variograms
represent second-order stationary processes and so have equivalent covariance
functions. They are illustrated in Figures 5.4 and 5.5.
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Figare 5.4 Bounded models with fixed ranges: (a) bounded linear; (b) circular;
(c) spherical; (d) pentaspherical.
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Bounded linear model

The simplest function for describing bounded variation consists of two straight
lines, as in Figure 5.4(a). The first increases and the other has a constant
variance:

h
y(h) = Amv forh < (5.13)

¢ for h > a,

where ¢ is the sill variance and a is the range. Evidently its slope at the origin is
¢/a. It is CNSD in one dimension (RY) only; it may not be used to describe
variation in two and three dimensions.

We can derive the variogram for the bounded linear model heuristically as
follows. We start with a stationary ‘white noise’ process, Y(x), in one dimen-
sion, i.e. a random process with random variables at all positions along a line
but in which there is no spatial dependence or autocorrelation. It has a mean p
and variance o%. Suppose that we pass the process through a simple linear filter
of finite length a to obtain

Z(x) — p = w \ ™ Yo (5.14)

Thus, we average Y(x) within the interval a to obtain the corresponding Z(x).
Consider now the variable Z(x) derived from two segments of the process ¥(x),
one from x; to x, and the other from x3 to x4. They may overlap or not, as below.

X3 X2 x3 X4
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Evidently, if the two segments do not overlap, as in the upper example, then we
should expect their means in Z(x) to be independent. But if they do overlap, as
in the lower example, then they will share some of the original white noise
series; their means will not be independent, and we should expect some
autocorrelation. In general, the closer is x; to x3 (and x; to x4) and the longer
is a, the stronger should be the correlation. In fact when x; coincides with w3
(and x, with x4) we should have perfect correlation. The only question is what
form the correlation takes as x3 approaches x;.
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To answer this we consider the discrete analogue of equation (5.14):

—pu=r¥E+d)+0Y(x+d+1)+ 1Y (x+d+2)
o Ag Y(x+d+a—1),

Z(x+d)
(5.15)

where the Ag,A1,..., s are weights, here all equal to 1/a, and d = 1/2a is
half the distance between two successive points in the sequence. All more
distant members, say Y{(x+d+a— 1 +b), of the series carry zero weight.
Suppose that Y{x) is a white noise process; then Z(x) Mm a moving average
process of order a — 1. Further, if the variance of Y(x) is % then that of Z(x) is

AoL + 2208 4+ A2 0%
=53 S
i=0

=o3/a,

o.m I»oné

(5.16)

which is familiar as the variance of a mean. It is also the covariance at lag 0,
C(0). We now want the covariances for the larger lags. These are obtained
simply by extension from the above equation:

a-1-h Nﬂ

C(h) = 0% M E?i”o@nlw .

=0 a

(5.17)

The covariances are in order, for h=0,1,2,...,a—1,a,

nloqw nlu% aINN zla+uab alan
a2 Y a2 LA Oys »oes @2 Y a2 Y-

Dividing through by the C(0) we obtain the autocorrelations, p(h), as

1, (a-1)/a, (a—2)/a,..., (a—a+1)/a, O.

In words, the covariance and autocorrelation functions decay linearly with
increasing h until h = a, at which point it is 0. Then the autocorrelation
coefficient at any h is simply equal to the proportion of the filter that overlaps
when the filter is translated by h. The variogram is obtained simply from
relation (4.14) by

y(h) = C(0) — C(h)

a—h o®(h h
-5 () ()

(5.18)

since ¢ = 0% /a = C(0).
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Circular model
The formula for the circular variogram is

2 h 2h h?
c H!In0m|pﬁlv+| Hl|~
T a) ' ma a

c for h >a.

for h <a,

y(h) = (5.19)

The parameters ¢ and a are again the sill and range. The function curves tightly
as it approaches the range (see Figure 5.4(b)) and its gradient at the origin is
4¢/ma. Tt is CNSD in R* and R?, but not in R®.

This model can be derived in a way analogous to that of the bounded linear
model from the area of intersection, A, of two discs of diameter a, the centres of
which are separated by distance h. Matérn (1960) did this by considering the
densities with which points are distributed at random by a Poisson process in
two overlapping circles. This area is

1 2 -1
A= N& cos Anv

0

<a~ h2

for h <
orh<a, (5.20)

for h > a.

If we express this as a fraction of the area, 7a?/4, of one of the circles, in the
same way as we expressed the fraction of the linear filter that overlapped along
the line above, then we obtain the autocorrelation for the separation:

forh<a. (5.21)

a a a?

2
o(h) HW cos™t AWV h 1- ©

Then from relation (4.14) the variogram, equation (5.19) above, follows.

Spherical model

By a similar line of reasoning we can derive the three-dimensional analogue of the
circular model to obtain the spherical correlation function and variogram. The
volume of intersection of two spheres of diameter a with their centres h apart is

N w N w
I + H. A

0 otherwise.

(5.22)

The volume of a sphere is wﬁaw. and so dividing by it gives the autocorrelation
3h 1 Ar

3
- <
p(h) = 2a " 2 av forh<a, (5.23)

0 : for h > a,
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and the variogram is
3n 1 (h\?
B I <
y(h) = c 5232 Aav forh<a,
c for h>a.

(5.24)

The spherical model seems the obvious one to describe variation in three-
dimensional bodies of rock, and it has proved well suited to them. It would seem
less obviously suited for describing the variation in one and two dimensions,
which is usually what is needed in soil and land resource survey. Yet it nearly
always fits experimental results from soil sampling better than the one- and
two-dimensional analogues. The function curves more gradually than they do
Figure 5.4(c), and the reason is probably that there are additional sources of
variation at other scales that it can represent. Its gradient at the origin is 3¢/2a.
It is CNSD in R? and R! as well as in R>.

The spherical function is one of the most frequently used models in geostatis-
tics, in one, two and three dimensions. It represents transition features that have
a common extent and which appear as patches, some with large values and
others with small ones. The average diameter of the patches is represented by the
range of the model. One can see this interpretation by simulating a large field of
values using the function as the generator. Figures 5.5 and 5.6(a) are examples in
which values have been simulated on a 256 x 256 square grid with unit interval.
The model had a sill variance, ¢ = 1.0, and ranges of a = 15,25 and 50 uniis in
Figures 5.5(a), 5.5(b) and 5.6(a), respectively. The maps show that the extents of
the patches with large and small values increase as the range increases. The
patches have a fairly regular form.

Pentaspherical model

Following Matérn (1960), McBratney and Webster (1986) extended the line of
reasoning to obtain the five-dimensional analogue of the above, the pentasphe-
rical function:

15h 5 (h\® 3 /h\’
=2z 0) 2= <
y(h) = ‘18z »sz *3 Anv forh <, (5.25)

c forh>a.
Tt is useful in that its curve is somewhat more gradual than that of the spherical
model Figure 5.4(d). Its gradient at the origin is 15¢/84. Again it is CNSD in R,
R? and R3.
Exponential model

A function that is also much used in geostatistics is the negative exponential:

) =c{1-ex (-9

W. (5.26)
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Figure 5.5 Simulated fields of values from spherical functions, equation (5.24), with
distance parameters (a) a = 15, (b) a = 25.

with sill ¢, and a distance parameter, r, that defines the spatial extent of the
model. The function approaches its sill asymptotically, and so it does not have a
finite range. Nevertheless, for practical purposes it is convenient to assign it an
effective range, and this is usually taken as the distance at which y equals 95%
of the sill variance, approximately 3r. Its slope at the origin is ¢/r. Figure 5.7(a)
shows it.

The function has an important place in statistical theory. It represents the
essence of randomness in space. It is the variogram of first-order autoregressive
and Markov processes. Its equivalent autocorrelation function has been the
basis of several theoretical studies of the efficiency of sampling designs by, for
example, Cochran (1946), Yates (1948), Quenouille (1949) and Matérn
(1960). We should expect variograms of this form where differences in soil
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Figure 5.6 Simulated fields of values using: (a) a spherical function, equation (5.24),
with distance parameter a = 50; (b) a pure nugget variogram, equation (5.33).

type are the main contributors to soil variation and where the boundaries
between types occur at random as a Poisson process. Burgess and Webster
(1984) found this to be the sitnation in many instances. If the intensity of the
process is 7 then the mean distance between boundaries is d = 1/1 and the
variogram is

y(h) = {1 — exp(~h/d)} .

— o{1 — exp(—nh)}. (5-27)

Put another way, this is the variogram of a transition process in which the
structures have random extents.
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Figure 5.7 Models with asymptotic bounds. All are scaled so that the effective range
where the function reaches 0.95 of its sill is approximately 1, marked by the vertical lines
on the graphs. (a) @ = 1 (exponential), r == 0.333; (b) Whitile, r = 0.25; (c) e = 1.25
(stable), r = 0.416; (d) = 1.5 (stable), r = 0.478; (e) & = 1.75 (stable), r = 0.533; (f)
o = 2 (Gaussian), r = 1/v/3.

Simulated fields obtained from an exponential function with an asymptote
approaching 1.0 and distance parameters, of 5 and 16 are shown in
Figure 5.8(a) and 5.8(b), respectively. The patches of large and small values
in the two fields are similarly irregular, but the average sizes of the patches
show the different spatial scales of the generator.
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Figure 5.8 Simulated fields of values from exponential functions (equation (5.26)).
with distance parameters (a) r = 5, (b) r = 16.

Whittile's elementary correlation

Whittle (1954) showed that a simple stochastic diffusion process also has an
exponential variogram in one and three dimensions. In R?, however, the
process leads to Whittle's elementary correlation, given by

y(h) = QT ..wﬁ @ v

The parameter c is the sill, as before, the a priori variance of the process, r is a
distance parameter, and K; is the modified Bessel function of the second
kind. Like the exponential function, Whittle’s function approaches its sill

(5.28)

Authorized Models 93

asymptotically and so has no definite range. Its effective range may be chosen
as for the exponential function where the semivariance reaches 95% of the sill,
and this is at approximately 4r. The function approaches the origin with a
decreasing gradient, however, and appears slightly sigmoid when plotted,
Figure 5.7(b).

Gaussian model

Another function with reverse curvature near the origin recurs again and again
in peostatistical texts and software packages. It is the so-called Gaussian model,
Figure 5.7(f), with equation

y(h) = nﬁw - mﬁuﬂlmvw.

Once more, ¢ is the sill and r is a distance parameter. The function approaches
its sill asymptotically, and it can be regarded as having an effective range of
approximately v/3r where it reaches 95% of its sill variance.

A serious disadvantage of the model is that it approaches the origin with zero
gradient, which we saw above as the limit for random variation and at which
the underlying variation becomes continuous and twice differentiable. This can
lead to unstable kriging equations, which we present in Chapter 8, and bizarre
effects when used for estimation—see Wackernagel (2003) for examples.

In general we deprecate this model. If a variogram appears somewhat
sigmoid then we recommend the theoretically attractive Whittle function.
Alternatively, if the reverse curvature is stronger you may replace the exponent
2 in equation (5.29) by an additional parameter, say c, with a value less

than 2:
y(h) = nﬁu - mﬁﬂlmv w

Wackernagel (2003) calls these ‘stable models’. Some examples of them are
shown in Figure 5.7(c)—(e) with various values of &, and we have used the model
with & = 1.965 to describe topographic variation (Webster and Oliver, 2006).

(5.29)

(5.30)

Cubic model

Another bounded model with reverse curvature near the origin is the cubic
function. Its formula is

P )

c forh>a.

for h <a, (5.31)
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The parameter a is a finite range which is approached much more gradually
than in the spherical and pentaspherical models.

There are other simple models used in particular disciplines because of their
theoretical attractions. Examples include the prismato-gravimetric and prismato-
magnetic functions developed in geophysics to model gravimetric and magnetic
anomalies (see Armstrong, 1998). If you work in such a special field then you

should ask whether there are preferred functions for the particular applications.

Matérn function

The Matérn function is a generalization of several of the functions mentioned
above and so appears attractive for this reason. Its formula is

y(h) = n? - mduzls @ K, @ v (5.32)

As in the exponential, Whittle and Gaussian models the function has a distance
parameter r, and ¢ is the sill. It also has a smoothness parameter, v, analogous
to « in the stable models, equation (5.30), though whereas « is limited to
between O and 2, v can vary in the range O (very rough) to infinity (very
smooth). It includes the special cases of exponential when v = 0.5 and Whittle's
function when v = 1. Figure 5.9 shows variograms for several values of v.
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Fignre 5.9 The Matérn function (5.32) with a priori variance ¢= 1 and distance
parameter r = 20 and five values of the smoothness parameter v, giving the five curves.
The curve with v = 0.5 is the exponential and that with v =1 is Whittle's function.
After Minasny and McBratney (2005).
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Unfortunately, when Minasny and McBratney (2005) examined its potential
for describing soil properties they had difficulty fitiing it to experimental
variograms. They found that v was poorly estimated by the usual method of
weighted least squares (see below).

Pure nugget

Although the limiting value O of the exponent of equation (5.10) for the power
function was excluded because it would give a constant variance, we do need
some way of expressing such a constant because that is what appears in
practice. We do so by defining a ‘pure nugget’ variogram as follows:

y(h) = co{1 - 8(h)}, (5.33)

where ¢ is the variance of the process, and 8(h) is the Kronecker § which takes
the value 1 when h = 0O and is zero otherwise. If the variable is continuous, as
almost all properties of the soil and natural environment are, then a variogram
that appears as pure nugget has almost certainly failed to detect the spatially
correlated variation because the sampling interval was greater than the scale of
spatial variation.

Since the nugget variance is constant for all h, |h| > 0, it is usually denoted
simply by the variance co. Figure 5.6(b) shows the simulated field from a pure
nugget variogram. There is no detectable pattern in the variation as there is in
Figures 5.5, 5.6(a) and 5.8. '

5.3 COMBINING MODELS

As is apparent in Figures 5.3, 5.4 and 5.7, all the above functions have simple
shapes. In many instances, however, especially where we have many data,
variograms appear more complex, and we may therefore seek more complex
functions to describe them. The best way to do this is to combine two or more
simple models. Any combination of CNSD functions is itself CNSD. Do not look
for complex mathematical solutions the properties of which are unknown.
The most common requirement is for a model that has a nugget component
in addition to an increasing, or structured, portion. So, for example, the
equation for an exponential variogram with a nugget may be written as

y(h) Hno.fnﬁw IEGAIWVW. (5.34)

r

and an example is shown in Figure 5.10(a). Figure 5.11 shows the simulated
fields for an exponential variogram with parameters ¢o = 0.333, ¢ = 0.667 and
distance parameters, r, of 5 and 16 as before. The speckled appearance within
the patches is the result of the nugget variance.
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Figure 5.10. Combined (nested) models: (a) single exponential with sill 0.75 plus a
nugget variance of 0.25; (b) double spherical with ranges 0.35 and 1.25 and correspond-
ing sills 0.3 and 0.5 plus a nugget variance of 0.2 with the components shown separately.
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Figure 5.11 Simmlated fields of values from exponential functions with nugget variance
one-third of the total variance, equation (5.34): with distance parameters (a) r = 5;
(b) r = 16.
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Spatial dependence may occur at two distinct scales, and these may be
represented in the variogram as two spatial components. The nested spherical,
or double spherical, function is the one that has been used most often in these
circumstances. Its equation is )

3 3
o wiWAlxiv +c ;whl;u.ﬂm,v forO<h<m,

2a; 2\n th 2\ay
y(h) = 3n 1/h\?
c1 40— — = — fora; <h<ay,
Nam 2\
c1+c2 forh> az, (5.35)

where ¢; and a; are the sill and range of the short-range component of the
variation, and ¢» and 4, are the sill and range of the long-range component. If it
appears to need a nugget then that can be added as a third component, and
Figure 5.10(b) shows this combination.

5.4 PERIODICITY

A variogram may seem to fluctuate more or less periodically, rather than increase
monotonically, and we might try to describe it with a periodic function. The
simplest such function is a sine wave, as shown in Figure 5.12(a), with equation

y(h) = S\.AH — cOS AW@V W, (5.36)

(0]

where W and o are the amplitude and length of the wave, respectively.

The gradient at the origin is 0, which, as mentioned above, is undesirable.
Usually, however, we find that the periodicity is superimposed on some other
source of variation and that the combined model increases from the origin more
steeply. Figure 5.12(b) shows an example of it superimposed on an exponential
function. An example from actual soil survey is illustrated in Chapter 7.

We might be tempted to move the curve along the abscissa to fit the
experimental values so that it increases more nearly linearly from lag 0. We
have drawn such a function as the dashed line in Figure 5.12(a). In other
words, we have introduced a phase shift, ¢. If we designate the angle 27h/w as
6 for simplicity then the equation becomes

y(h) = W{1 —cos(6 — ¢)}. (5.37)

Unfortunately, the resulting function is not guaranteed to be CNSD, and so the
temptation should be resisted.

Equation (5.36) is valid for one dimension only; it is not CNSD in R? and R3.
In two and three dimensions the fluctuation must damp, i.e. become less



