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ABSTRACT 
 
The binary feature vector is one of the most common 
representations of patterns and measuring similarity and 
distance measures play a critical role in many problems 
such as clustering, classification, etc. Ever since Jaccard 
proposed a similarity measure to classify ecological 
species in 1901, numerous binary similarity and distance 
measures have been proposed in various fields. Applying 
appropriate measures results in more accurate data 
analysis. Notwithstanding, few comprehensive surveys 
on binary measures have been conducted. Hence we 
collected 76 binary similarity and distance measures used 
over the last century and reveal their correlations through 
the hierarchical clustering technique.  
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1. INTRODUCTION 
 
The binary similarity and dissimilarity (distance) 
measures play a critical role in pattern analysis problems 
such as classification, clustering, etc. Since the 
performance relies on the choice of an appropriate 
measure, many researchers have taken elaborate efforts to 
find the most meaningful binary similarity and distance 
measures over a hundred years. Numerous binary 
similarity measures and distance measures have been 
proposed in various fields. 
 
For example, the Jaccard similarity measure was used for 
clustering ecological species [20], and Forbes proposed a 
coefficient for clustering ecologically related species [13, 
14]. The binary similarity measures were subsequently 
applied in biology [19, 23], ethnology [8], taxonomy 
[27], image retrieval [25], geology [24], and chemistry 
[29]. Recently, they have been actively used to solve the 
identification problems in biometrics such as fingerprint 
[30], iris images [4], and handwritten character 
recognition [2, 3]. Many papers [7, 16, 17, 18, 19, 22, 26] 
discuss their properties and features.  
 
Even though numerous binary similarity measures have 
been described in the literature, only a few comparative 
studies collected the wide variety of binary similarity 
measures [4, 5, 19, 21, 28, 30, 31]. Hubalek collected 43 
similarity measures, and 20 of them were used for cluster 
analysis on fungi data to produce five clusters of related 
coefficients [19]. Jackson et al. compared eight binary 
similarity measures to choose the best measure for 

ecological 25 fish species [21]. Tubbs summarized seven 
conventional similarity measures to solve the template 
matching problem [28], and Zhang et al. compared those 
seven measures to show the recognition capability in 
handwriting identification [31]. Willett evaluated 13 
similarity measures for binary fingerprint code [30]. Cha 
et al. proposed weighted binary measurement to improve 
classification performance based on the comparative 
study [4].  
 
Few studies, however, have enumerated or grouped the 
existing binary measures. The number of similarity or 
dissimilarity measures was often limited to those 
provided from several commercial statistical cluster 
analysis tools. We collected and analyzed 76 binary 
similarity and distance measures used over the last 
century, providing the most extensive survey on these 
measures.  
 
This paper is organized as follows. Section 2 describes 
the definitions of 76 binary similarity and dissimilarity 
measures. Section 3 discusses the grouping of those 
measures using hierarchical clustering. Section 4 
concludes this work. 
 

2. DEFINITIONS 
 

Table 1 OTUs Expression of Binary Instances i and j 
j        i 1 (Presence) 0 (Absence) Sum 

1 (Presence) jia •=  jib •=  a+b 

0 (Absence) jic •=  jid •=  c+d 

Sum a+c b+d n=a+b+c+d 

 
Suppose that two objects or patterns, i and j are 
represented by the binary feature vector form. Let n be 
the number of features (attributes) or dimension of the 
feature vector. Definitions of binary similarity and 
distance measures are expressed by Operational 
Taxonomic Units (OTUs as shown in Table 1) [9] in a 2 x 
2 contingency table  where a is the number of features 
where the values of i and j are both 1 (or presence), 
meaning ‘positive matches’, b is the number of attributes 
where the value of i and j is (0,1), meaning ‘i absence 
mismatches’, c is the number of attributes where the 
value of i and j is (1,0), meaning ‘j absence mismatches’, 
and d is the number of attributes where both i and j have 
0 (or absence), meaning ‘negative matches’. The diagonal 
sum a+d represents the total number of matches between 



i and j, the other diagonal sum b+c represents the total 
number of mismatches between i and j. The total sum of 
the 2x2 table, a+b+c+d is always equal to n.  
 
Table 2 [5] lists definitions of 76 binary similarity and 
distance measures used over the last century where S and 
D are similarity and distance measures, respectively. 
 

Table 2 Definitions of Measures for binary data 
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The inclusion or exclusion of negative matches, d in the 
binary similarity measures have been an ongoing issue [9, 
12, 15, 16, 17, 18, 26, 27]. The Sokal & Michener, the 
Roger & Tanimoto, the Faith, the Ochiai II, the Cole, the 
Gower, Pearson I, and the Stiles etc. are included in the 
negative match inclusive measures. The Jaccard, the 
Tanimoto, the Dice & Sorenson, the Kulczynski I, the 
Ochiai I, the Mountford, the Sorgenfrei, and the Simpson 
etc. are included in the negative match exclusive 
measures. Sokal et al. argued that the negative matches 
do not mean necessarily any similarity between two 
objects [27]. This is because an almost infinite number of 
attributes is possibly lacking in two objects.  
 
In cases where the two binary states are not equally 
important, such as in the asymmetric type of binary data, 
the positive matches are usually more significant than the 
negative matches [1, 6, 10, 26]. Faith included the 
negative match but only gave the half credits while giving 
the full credits for the positive matches in eqn (10) [11]. 
In [4], different weights for positive and negative matches 
were studied. Weighted similarity measures such as 
weighted hamming distance or azzoo [4] are not covered 
in this paper though. 
 
Historically, all the binary measures observed above have 
had a meaningful performance in their respective fields. 
The binary similarity coefficients proposed by Peirce, 
Yule, and Pearson in 1900s contributes to the evolution 
of the various correlation based binary similarity 
measures. The Jaccard coefficient proposed at 1901 is 
still widely used in the various fields such as ecology and 
biology. The discussion of inclusion or exclusion of 
negative matches was actively arisen by Sokal & Sneath 
in during 1960s and by Goodman & Kruskal in 1970s. In 
Figure 1, the measures are arranged in historical order.  
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Figure 1 Chronological Table of Binary Similarity Measures and Distance Measures by Year 

 
3. HIERARCHICAL CLUSTERING 

 
Hierarchical clustering is conducted to estimate the 
similarity among the measures collected. Random binary 
data set are used as data set. The reference set consist of 
30 binary instances, each of which has 100 binary 
features. When a test query is measured with the 
reference set data, 100 distance or similarity values are 
produced for each measure. The correlation coefficient 
values between two measures are used to build a 
dendrogram. The agglomerative single linkage with the 
average clustering method is used [9].  
 
The dendrogram in Figure 2 is produced by averaging 30 
independent trials. The vertical scale on the left side of 
dendrogram represents the binary similarity or 
dissimilarity measures examined. The horizontal scale 
represents the closeness of two clusters of binary 
similarity or dissimilarity measures, where 0 ≤ r ≤ 1. The 
dendrogram provides intuitive semantic groupings of 
binary similarity measures and distance measures. 
 
High correlations are found in the most of measures 
including negative matches. They are identified as Group 
1 including the Simple Matching, the Pearson’s phi-like 
coefficients, and the Yule Q. The exceptional case is the 
Yule w, which has a square root of ad – bc in the 
numerator. It is clustered in Group 5 showing different 

behavior. All of the Hamming-like binary distance 
measures are categorized in Group 1 while the Lance & 
Williams and the Bray-Curtis distance measures are 
clustered in Group 2 closely related with the Hellinger 
and the Chord distance measures. Most of negative match 
exclusive measures are clustered in Group 2 and 3. 
Additive form of negative match exclusive measures such 
as the Jaccard, the Dice & Sorenson, or the Kulczynski I, 
have high correlation with the Cosine based measures 
such as the Ochiai I or the Sorgenfrei. Interestingly, the 
Faith is categorized in Group 2 even though it is a 
variation of the Sokal & Michener of Group 1. The 
Driver & Kroeber, the Forbes I, and the Fossum have 
high correlation with inner product based measures such 
as the Russell & Rao. They are clustered in Group 3. The 
probabilistic similarity measures such as the Goodman & 
Kruskal and the Anderberg are identical as clustered in 
Group 6. The Yule w, the Eyraud, the Fager & 
McGowan, the Stiles, the Tanimoto, and the Peirce are 
different from others as they are clustered in Group 5, 7, 
8, 9, 10, and 11 respectively. The Chi-square based 
measures such as the Pearson I and Pearson II are 
clustered separately forming Group 4. The Tarantula has 
high correlation with the Sokal & Sneath III and clustered 
in Group 1 while the AMPLE coefficient, the absolute 
value of the Tarantula, has high correlation with chi-
square based measures and clustered in Group 4. 
 

 



 
Figure 2 Hierarchical Clustering Result of Random Binary Data Set 

 
 



4. CONCLUSIONS 
 
Numerous binary similarity measures and distance 
measures have been used in various fields. Each of them is 
differently defined by its own synthetic properties. Some 
include negative matches and some do not. Some use 
simple count difference and some utilize complicated 
correlation. In this survey, we collected 76 binary similarity 
and distance measures used over the last century, classified 
them through hierarchical clustering, and observed close 
relationships among some of the measures. We expect that 
the relationship of each pair of measures should help 
researchers select more accurate measure for binary data 
analysis in various domains.  
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