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mvabund analyses of Skokholm dataset

The general concept is to create a mvabund object, a matrix with species composition data. Rows = sites
and columns = species. Functions in the mvabund library are designed to use an mvabund object as the
“response” variable.

The main modeling function is manyglm(), to fit glm models with various distributions, including Poisson
and negative binomial, to each species and package the results in a useful way. Alternatives include manylm()
to fit models with gaussian=normal responses and manyany() to fit any R modeling function. The example
at the very end uses manyany() to fit a spline model, gam(count ~ s(year), family=‘nb’) to each species. This
is included only to show what is possible. It is way beyond what you need to know.

This document illustrates two uses of manyglm():

 comparing species composition between two groups of samples (1930’s and 1960’s) and * fitting regression
models, specifically a linear regression on year.

We read the data and create a new data frame with just the 1930’s and 1960’s data for all species. The data
manipulation is done using functions in the dplyr library. Base R functions could be used, but dplyr code is
usually easier to read.

skokholm <- read.table('../skokholm.txt', header=T)
# keep only 1930's and 1960's data

decades <- skokholm %>%
mutate(decade = 10*floor(year/10)) %>%
filter(decade %in’% c(1930, 1960))

create the mvabund object with just the species composition data We need to remove year and
decade, so the data frame has only species information. Then, mvabund() converts the data frame to a matrix
and checks that it is a reasonable matrix of species composition, i.e. no negative values.

# remove year and decade (the only two non-species composition variable)
temp <- decades %>’ select(-year, -decade)

# then convert to a mvabund object
decades.mva <- mvabund(temp)

# check by printing the column names (only want the species wariables)
# the muabund object is a matriz, not a data frame, so need to use dimnames(), mnot names()
dimnames (decades.mva) [[2]]

## [1] IIHO n llApll IIDOH IIAall IIS-VII "VV" IICOII Ilcmll "CC" Ilpmll
## [11] Ilcrll IIESII llell IIGCII llell llMall llAp. 1" IlHrll IISCII IIASII
## [21] IIFPII |ICuIl llRall |IErIl "Sr" "CX" "Pp" "AC" IIGgII



Because we want to compare two groups, convert decade (numeric) to a factor named decade.f.

decades <- decades %>%
mutate(decade.f = factor(decade))

The mvabund library provides various potentially useful plots:

# plot the data, separate observations by decade
# only shows the most abundant species
plot(decades.mva ~ decades$decade.f)

## Overlapping points were shifted along the y-axis to make them visible.

##
## PIPING TO 2nd MVFACTOR

## Only the variables Ho, Ap, Aa, 0o, Vv, Sv, Cc, Pm, Cm, Cr, Co, Gc were included in the plot
## (the variables with highest total abundance).
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# look at mean vs wariance for all species in both periods
meanvar.plot (decades.mva ~ decades$decade.f)

## START SECTION 2
## Plotting if overlay is TRUE

## using grouping variable decades$decade.f 19 mean values were O and could
## not be included in the log-plot

## using grouping variable decades$decade.f 21 variance values were O and could not
## be included in the log-plot



mean-var plot, decades$decade.f
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## FINISHED SECTION 2

Using manyglm()

manyglm() fits the glm to all species. The default distribution is a negative binomial distribution. family=
will specify a new distribution. Currently, manyglm() provides binomial, poisson, negative.binomial, and
Gamma distributions. manylm() fits normal distributions and manyany() provides access to just about any

modeling function and error distribution.

Each species is assumed to have a different overdispersion when using a negative binomial distribution.

However all observations for a species are assumed to have the same overdispersion.

The “response” variable is the mvabund object. The X variables (right hand side of the formula can be any R
formula. data= specifies where to find the variables used in the right-hand side of the formula. I usually

don’t try to put the mvabund object (response variable) in the data frame. It’s a separate object.

decades.glm <- manyglm(decades.mva ~ decade.f, data=decades)

decades.glm

##
## Call: manyglm(formula = decades.mva ~ decade.f, data = decades)
## [1] "negative.binomial"

##

## Nuisance Parameter(s) phi estimated by the PHI method.

## Ho Ap Oo Aa Sv Vv Co Cm Cc Pm Cr
## 0.007 0.007 0.009 0.027 0.550 0.119 6.181 3.264 0.007 0.007 0.006
## Es Tm Gc Bb Ma Ap.1 Hr Sc As Fp Cu



## 0.007 0.007 0.006 0.007 0.007 0.006 0.007 0.007 0.006 0.007 0.006

#i# Ra Er Sr Cx Pp Ac Gg

## 0.006 0.006 0.006 0.006 1.050 1.050 0.006

##

## Degrees of Freedom: 19 Total (i.e. Null); 18 Residual

##

## Ho Ap Oo Aa Sv Vv

## 2*xlog-likelihood: -124.649 -119.002 -112.289 -101.642 -80.479 -119.700
## Residual Deviance: 12.526 9.214 20.091 14.905 10.762 20.138
## AIC: 130.649 125.002 118.289 107.642 86.479 125.700
## Co Cm Cc Pm Cr Es

## 2xlog-likelihood: -25.914 -46.167 -84.693 -85.731 -41.289 -15.330
## Residual Deviance: 6.423 9.527 5.326 32.505 0.676 7.330
## AIC: 31.914 52.167 90.693 91.731 47.289 21.330
## Tm Ge Bb Ma Ap.1 Hr

## 2*log-likelihood: -20.380 -33.224 -19.897 -23.537 -19.829 -13.224
## Residual Deviance: 7.766 7.224 1.897 11.537 11.829 7.224
## AIC: 26.380 39.224 25.897 29.537 25.829 19.224
## Sc As Fp Cu Ra Er

## 2xlog-likelihood: -17.043 -6.605 -10.438 -6.605 -6.605 -6.605
## Residual Deviance: 11.043 4.605 6.438 4.605 4.605 4.605
## AIC: 23.043 12.605 16.438 12.605 12.605 12.605
#i# Sr Cx Pp Ac Gg

## 2xlog-likelihood: -6.605 -6.605 0.000 0.000 -6.605

## Residual Deviance: 4.605 4.605 0.000 0.000 4.605

## AIC: 12.605 12.605 6.000 6.000 12.605

Printing the manyglm result for a negative binomial distribution provides:

e A list of the estimated overdispersion parameters for each species.

e a table with fit statistics for each species

manyglm() defines overdispersion as variance: mu + phi * mu”2, so phi = 0 is a Poisson distribution, no
overdispersion.

The reported fit statistics are 2*the log likelihood, the residual deviance, and the AIC statistic.
There are many of the usual helper functions:

o logLik(): extracts the log likelihood for each species

o AIC(): extracts the AIC statistic for each species

« predict(): predicts the mean for each species and observation. Default is on the link scale, i.e. log(mean)
for a negative binomial. type=‘response’ provides backtransformed predictions of mean counts.

o resid(): provides Dunn-Smyth = PIT residuals for each species and observation.

plotting the fitted model produces a plot of residuals vs predicted values. These residuals should look like a
flat band. If the model is appropriate, the residuals should have a standard normal distribution. That means
95% of the residuals should be between -2 and 2.

plot(decades.glm)
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Randomization based inference on a manyglm() result Note: These functions are often slow (seconds
to minutes) because of doing 1000 randomizations.

o summary() will test each regression coefficient
 anova() will do sequential tests of model terms

For both, the default is to only provide the “all species” result. Adding p.uni=‘adjusted’ or p.uni=‘unadjusted’
will provide tests for each species. unadjusted provides results without any adjustment for testing multiple
species. adjusted does that adjustment.

anova(decades.glm)

## Time elapsed: O hr O min 10 sec

## Analysis of Deviance Table

##

## Model: decades.mva ~ decade.f

##

## Multivariate test:

#it Res.Df Df.diff Dev Pr(>Dev)

## (Intercept) 19

## decade.f 18 1 203.4 0.001 *x*x

## -—-

## Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

## Arguments:
## Test statistics calculated assuming uncorrelated response (for faster computation)
## P-value calculated using 999 iterations via PIT-trap resampling.




which species changed? It is often interesting to look at individual species. To do this, you can examine
the individual univariate p-values or look at species-specific changes in AIC between two models. The
univariate test approach allows adjusting for multiple testing.

temp <- anova(decades.glm, p.uni='adjusted')

## Time elapsed: O hr O min 10 sec

# print out just a bit of the result, spectifically the first 5 species:
temp$uni.p[,1:5]

## Ho Ap Oo Aa Sv
## (Intercept) NA NA NA NA NA
## decade.f 0.063 0.922 0.001 0.001 0.001

The output is a matrix with one row for each test and one column for each species. For this analysis, the first
test is intercept = 0 (not very interesting); the second row is change between decades = 0 (what we care
about).

Printing the output gives a lot of results. If we’re only interested in which species show evidence of a change,
we only want to find those with p-values for the decade effect that are < 0.05 (or 0.10).

which(temp$uni.p[2,] < 0.05)

## 0o Aa Sv Vv Cm Pm Tm Bb
## 3 4 5 6 8 10 13 15

An alternative is to use a model selection approach. That is compare AIC statistics between the model that
allows a change between decades and a model that forces both decades to have the same mean. As always
with manyglm(), each species is fit separately. This approach doesn’t adjust for multiple testing.

# fit the null model of mo change
decades.glm0 <- manyglm(decades.mva ~ 1, data=decades)

# then comparing AIC statistics for each species between the two models

plot(AIC(decades.glm0) - AIC(decades.glm), pch=19, col=4,
xlab="'Species number', ylab='Change in AIC' )

abline(h=2, 1ty=3)

abline(h=0, 1lty=3, col=2)
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# can get fancy and label X azis with the 2 letter species codes (reduced so all fit)
plot (AIC(decades.glm0) - AIC(decades.glm), pch=19, col=4,
xlab='Species number', ylab='Change in AIC',
xaxt='n')
axis(1l, at=1:29, dimnames(decades.mva) [[2]], cex.axis=0.6)
abline(h=2, 1ty=3)
abline(h=0, 1ty=3, col=2)
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# which species have more than a 2 unit change in AIC?

# 1f you want the species numbers:
which(AIC(decades.glm0) - AIC(decades.glm) > 2)

## [1] 1 3 4 5 6 7 8 10 12 13 15 18

# or get the specties codes by subscripting the vector of names
dimnames (decades.mva) [[2]] [AIC(decades.glm0) - AIC(decades.glm) > 2]

## [1] IIHO n "00 n IlAall "SV" "VV" IICO n IIlel "PII]." IIES n IITmll IIBbll IIHrII
plot (temp$uni.p[2,], AIC(decades.glm0) - AIC(decades.glm), pch=19, col=4,

xlab='Adjusted p-value', ylab='Change in AIC',
log='xy"')

and (out of curiosity), how does the adjusted p-value compare to the change in AIC?

## Warning in xy.coords(x, y, xlabel, ylabel, log): 14 y values <= 0 omitted from

## logarithmic plot
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The test and the AIC approach are very similar, they differ only in the cutoffs for ‘signficant change’.

Fitting a regression model

We now consider all years of data and fit a regression model where each species’s count follows a log-linear
regression on year. This requires working with the full skokholm data set. We also subtract 1928 from all year
values so the intercept (year 0) is at the start of the data set (1928), not very, very far in the past (0 CE).

# omit year from the species composition mairix
skokholm.mva <- mvabund(

skokholm %>J, select(-year) )
dimnames (skokholm.mva) [[2]]

## [1] "HO" llApll IIDOH llAall "SV" Ilell IICOII Ilcmll "CC" Ilell
## [11] IlCrll |IESII Ilell |IGCII llell IIMaII llAp. 1l| IlHrll IISCII IIASll
## [21] IlelI IICuII IlRall |IErIl llSrll IICXII "Pp“ IIACH lIGgII

# subtract 1928 from year values, so intercept is abundance in 1928, not 0 CE.
skokholm <- skokholm %>%

mutate(yearc = year - 1928)
This is a regression model, with a continuous covariate
skokholm.glm <- manyglm(skokholm.mva ~ yearc, data=skokholm)
anova(skokholm.glm)
## Time elapsed: 0 hr 0 min 27 sec

## Analysis of Deviance Table



##
## Model: skokholm.mva ~ yearc

#i#

## Multivariate test:

#it Res.Df Df.diff Dev Pr(>Dev)

## (Intercept) 46

## yearc 45 1 442.6 0.001 *xx*

## -—-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

## Arguments:
## Test statistics calculated assuming uncorrelated response (for faster computation)
## P-value calculated using 999 iterations via PIT-trap resampling.

Analysis of species composition

All the previous analyses have examined counts of individuals. That is not the only way to define species
composition. Consider 2 sites with 3 species each. Here are the counts:

« Site 1: 15, 5, 30
« Site 2: 75, 25, 150

Site 2 clearly has more total individuals than site 1, so assessing counts will tell you that the two sites have
different abundances.

Species composition can also be defined as relative count, i.e. the proportion of each species. For these two
sites, the proportions are:

« Site 1: 30%, 10%, 60%
. Site 2: 30%, 10%, 60%

The two sites have identical species composition. There are two ways to convert a glm for counts into an
analysis of relative proportion.

« include an offset, here log(total), in the model. An offset variable has a fixed regression coefficient of 1.
Since this is on the right-hand side of the model equation, it is equivalent to modeling log(count/effort).
This assumes that the total is a fixed constant. Hence, it is best when you want to adjust for different
sampling efforts, e.g. 1 hour sampling for site 1 and 5 hours for site 2.

e Include a different intercept for each site. This estimates the log total for each site and adjusts other
inferences for estimating the site effects. This does not assume the log totals for each site are known.

The following interpretation assumes that you have used a log link. This is the default for Poisson and
Negative Binomial distributions.

The model that includes site effects could be written as log(mean count) = row(= site) + column(=species)
+ row:column. The row effect tests whether all sites have the same mean abundance. The column effect tests
whether all species have the same mean abundance (rarely interesting). The really interesting test is the
row:column interaction, which tests whether the species proportions are the same at all sites.

Here is the code and anova results for the 1930’s and 1960’s Skokholm data:

decades.spcomp <- manyglm(decades.mva ~ decade.f,
data=decades, composition=T)

anova(decades.spcomp)

## Time elapsed: O hr 5 min 56 sec

## Analysis of Deviance Table
#i
## Model: decades.mva ~ cols + decade.f + rows + cols:(decade.f)

10



##
## Multivariate test:

#t Res.Df Df.diff Dev Pr(>Dev)

## (Intercept) 579

## cols 551 28 695.0 0.001 *xx

## decade.f 550 1 26.7 0.001 *xx

## rows 531 19 44.5 0.004 *x

## cols:decade.f 504 28 354.2 0.001 **x

## ——-

## Signif. codes: O 's*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

## Arguments: P-value calculated using 999 iterations via PIT-trap resampling.

You see that there are significant differences in abundance between the two periods (decade.f test), between
years within each period (rows, within period because its after decade.f in the model), and in relative species
composition between periods (cols:decade.f).

The composition model works by turning the data from wide format (one column per species) into long
format, one row for each combination of species and site. Fitting amodel with composition=T is very slow,
because the model has more terms and has to deal with all observations at once (not just those for one species
at a time). The unfortunate side effect of this is that the model fits only one overdispersion parameter, which
is assumed to be the same for all species.

Fitting an offset to each row (site) is much faster. Here’s how to do that:

Note: Fitting this model is VERY slow.

# determine row totals = total # breeding pairs each year

# eastest to work with the mvabund object because it's only got the counts
# dimension 1 = site (2 = spectes)

total <- apply(decades.mva, 1, sum)

# and add log(total) to the data frame.
# NB: the offset MUST be the log total
decades$logtotal <- log(total)

# and fit the model with an offset for each site
# a quirk: need to specifically indicate where to find the offset wvalue
decades.offset <- manyglm(decades.mva ~ decade.f,

data=decades, offset=decades$logtotal)

anova(decades.offset)

## Time elapsed: O hr O min 12 sec

## Analysis of Deviance Table

##

## Model: decades.mva ~ decade.f

##

## Multivariate test:

## Res.Df Df.diff Dev Pr(>Dev)

## (Intercept) 19

## decade.f 18 1 264.7 0.001 *x*x

## -—-

## Signif. codes: O '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

## Arguments:
## Test statistics calculated assuming uncorrelated response (for faster computation)
## P-value calculated using 999 iterations via PIT-trap resampling.

11



The results have exactly the same format as those for counts. Because log total is included as an offset, the
response variable is the % in the sample.

Blue-sky extensions

It is possible to fit a wide range of models using the manyany() function. This can interface with any R
modeling function

For example: what about a smooth, possibly non-linear model for year? For a single species, that would be
gam(count ~ s(year), family=nb) from the mgev library.

The code below worked 2 years ago. It doesn’t work in recent versions of mvabund. I have a
bug request in to the folks who maintain mvabund. If you need to do something like this, see me to
get the older version that will fit spline models.

library (mgcv)

## Loading required package: nlme

##
## Attaching package: 'nlme'’

## The following object is masked from 'package:dplyr':
##

## collapse
## This is mgcv 1.8-42. For overview type 'help("mgcv-package")'.

source ('manyany0ld.r')
skokholm.spline <- manyany0ld('gam', skokholm.mva, skokholm.mva ~ s(yearc),
family='nb', data=skokholm, get.what='models')

## Warning in newton(lsp = 1lsp, X = G$X, y = G$y, Eb = G$Eb, UrS = G$UrS, L = G$L,
## : Iteration limit reached without full convergence - check carefully
## Warning in newton(lsp = 1lsp, X = G$X, y = G$y, Eb = G$Eb, UrS = G$UrS, L = G$L,
## : Iteration limit reached without full convergence - check carefully
## Warning in newton(lsp = 1lsp, X = G$X, y = G$y, Eb = G$Eb, UrS = G$UrS, L = G$L,

## : Fitting terminated with step failure - check results carefully

# the warnings are for erratic species mesting in very few years.

# change in AIC between the linear and the spline model

#  shows which species have non-linear trends over time

plot (AIC(skokholm.glm) - AIC(skokholm.spline), pch=19, col=4,
xlab='Species number', ylab='Change in AIC')

abline(h=0, 1lty=3)

12
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If you want to do variable selection, glmlpath() uses a LASSO algorithm to fit a sequence of species-specific
models with increasing numbers of variables. It also returns the species-specific models that minimize the
BIC criterion. See the help file for glmlpath for more information.
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