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This document describes a few additional features of RMark, then provides a cross-reference between the
open population extensions discussed in lecture and the necessary RMark commands.

Additional useful features of RMark

more “automatic” variables (actually a feature of Mark) The intro document described how using
time in a formula provided time-specific (e.g. year-specific) estimates for a parameter. There are other
“automatic” variables:

• Time (note capitalization): use time as a regression variable with values 0, 1, 2. Fits a linear regression
on the link scale, so logit(probability) = b0 + b1time or log(count) = b0 + b1 time. The intercept is
the predicted link-scale value in year 1, the first year of the data.

For example, one of the models fit in the Intro document was mT, p ~ Time.
reid.models[['mT']]$results$beta

## estimate se lcl ucl
## p:(Intercept) -0.2505940 2.196049e-01 -6.810196e-01 1.798315e-01
## p:Time 0.1873047 9.224140e-02 6.511400e-03 3.680979e-01
## f0:(Intercept) -19.8133970 1.326028e+04 -2.600996e+04 2.597034e+04

The estimated intercept and slope are -0.2505 and 0.187, so fitted equation is logit(capture probability) =
-0.2505 + 0.187 * Time. For time 2, Time has the value of 1, so that predicted value is -0.2505 + 0.187*1 =
-0.0635 and the backtransformed capture probability is 1/(1+exp(-(-0.0635))) = 0.484. You don’t have to do
the work, RMark provides that value as the real parameter for p at time 2:
reid.models[['mT']]$results$beta

## estimate se lcl ucl
## p:(Intercept) -0.2505940 2.196049e-01 -6.810196e-01 1.798315e-01
## p:Time 0.1873047 9.224140e-02 6.511400e-03 3.680979e-01
## f0:(Intercept) -19.8133970 1.326028e+04 -2.600996e+04 2.597034e+04

• Age: age of individual, as a regression variable. Default is to assume individuals are marked at age 0.
You can provide initial ages, either for all individuals or for groups of individuals, e.g. newborn or adult
(just like we specified captures histories for sex=Male and sex=Female). See initial.age = for how to
specify initial ages.

To illustrate the difference between Time and Age, here are the values generated for newborns released in
years 1, 2, and 3 and recaptured in years 2, 3, and 4:

Using Time:
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Release year 2 year 3 year 4
year 1 1 2 3
year 2 2 3
year 3 3

Using Age:

Release year 2 year 3 year 4
year 1 1 2 3
year 2 1 2
year 3 1

You can combine age + time effects (an additive effects model for 2 regression variables). You can write the
interaction between age and time, i.e. age:time to generate a different value for each cell of the table.

• age: Treats age as a factor variable (instead of a regression variable). Each number in the tables above
corresponds to a unique mean (for each time or for each age).

• cohort: Generates a unique mean for each release occasion. A regression doesn’t make sense here, so
there is no Cohort. The numbers in the table below indicate each mean.

Using cohort:

Release year 2 year 3 year 4
year 1 1 1 1
year 2 2 2
year 3 3

I use age and time a lot. I rarely have the need to use cohort.

Creating your own design matrix. This is possible but it requires a bit of work. You may remember
that the mark() function runs 5 separate functions in order. To create your own design matrix, you need
to intervene after the second of those separate functions. That means you have to run the 5 functions
individually. The multi-year open population dipper data set has an example of doing this. These birds live
along mountain streams. For those data, there was a flood in year 2 that was assumed to affect survival in
years 2 and 3 and capture probability in year 3. ?dipper describes how to create and use these variables.
Look for “Add Flood covariates” in the help file. The next few lines create covariate named Flood. Further
down, you’ll see formulae that include Flood.

Model averaging when some parameters are not identified

model.average() is very useful to model average a collection of models. By default, it model averages all
parameters. Unfortunately, it is very conservative. If any parameter to be averaged is unidentified in a model
(operationally defined by very large variance), that model is eliminated totally and completely. Even if you
really only care about some other parameters that are identified in all models.

There are two solutions, depending on the relationship between the problem parameters and the ones you
care about:

1) If they are different “types”, e.g. one of the p’s isn’t identified but all you care about is f0 (for a closed
population), then specify the parameter type you’re interested in. For example, in the reid models from
the intro part 1 document, the last p and f0 are not identified. You could model average c’s by
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model.average(reid.models, parameter='c')

## par.index estimate se fixed note group time Time c
## c g1 t2 7 0.6116022 0.06050248 1 2 0 1
## c g1 t3 8 0.6010348 0.05903125 1 3 1 1
## c g1 t4 9 0.6054390 0.05013745 1 4 2 1
## c g1 t5 10 0.6139526 0.04805464 1 5 3 1
## c g1 t6 11 0.6133941 0.04666496 1 6 4 1

2) If they are not different types, e.g. in a general CJS model, the last survival and last capture probability
are unidentified, but you want to estimate other survival parameters. To do this, you need to be more
specific about what you want to model average. This requires finding the PIMS index number(s) for
the parameters of interest. Pick any model and have RMark print out the PIMS index numbers:

reid.models[['mtb']]$pims

## $p
## $p[[1]]
## $p[[1]]$pim
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 2 3 4 5 6
##
## $p[[1]]$group
## [1] 1
##
##
##
## $c
## $c[[1]]
## $c[[1]]$pim
## [,1] [,2] [,3] [,4] [,5]
## [1,] 7 8 9 10 11
##
## $c[[1]]$group
## [1] 1
##
##
##
## $f0
## $f0[[1]]
## $f0[[1]]$pim
## [,1]
## [1,] 12
##
## $f0[[1]]$group
## [1] 1
reid.models[['mt']]$pims

## $p
## $p[[1]]
## $p[[1]]$pim
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 2 3 4 5 6
##
## $p[[1]]$group
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## [1] 1
##
##
##
## $c
## $c[[1]]
## $c[[1]]$pim
## [,1] [,2] [,3] [,4] [,5]
## [1,] 7 8 9 10 11
##
## $c[[1]]$group
## [1] 1
##
##
##
## $f0
## $f0[[1]]
## $f0[[1]]$pim
## [,1]
## [1,] 12
##
## $f0[[1]]$group
## [1] 1

The choice of model doesn’t matter. The index numbers are the same for all models. Most models force
various values to be the same, but that doesn’t matter. You see here that parameters 1 to 6 are the 6 initial
capture probabilities, 7 to 11 are the 5 recapture probabilities and 12 is the # unseen.

Then tell RMark to model average specific parameters
model.average(reid.models, indices=c(1, 2, 7, 12))

## par.index estimate se
## 1 1 0.3478323 0.07635712
## 2 2 0.3494347 0.08099008
## 3 7 0.6116022 0.06050248
## 4 12 2.7110810 3.18183066

will average p1, p2, c2 and f0.

Catalog of RMark model names

This is a simpler, condensed version of the MarkModels.pdf document that can be found on the class web
site or downloaded in the RMark library folder.

Class model name Mark model parameters
Cormack-Jolly-Seber CJS Phi p
Pradel PradSen Phi p Gamma
Pradel with lambda Pradlambda Phi p Lambda
Seber Dead Recovery Recovery S r
Brownie Dead Recovery Brownie S f
Robust design Robust S p c gamma’ gamma’ ’
Multistate Multistate S p Psi
Superpopulation POPAN Phi p pent N
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Notes: The MarkModels document says the Pradel with lambda model is PradLambda (capital L), but
RMark wants Pradlambda. I didn’t check PradSen. The Robust design model seems to deal with temporary
emigration, since gamma’ and gamma’ ’ are parameters.
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