
dietall2.r: Explanation of code

Goals of code:

• Fitting ANOVA models

• “After the ANOVA”

– estimating group means and standard errors

– estimating linear combinations of means

This code requires functions in an add-on package, emmeans (for after the ANOVA). You will have
to download it and install it once (that’s why the install.packages() code is commented out). You
will have to enable the library, using library(), each time you start R.

Installing a new package: install.packages(’emmeans’)
This will link to one of the many mirror sites for CRAN, the Comprehensive R Archive Network.
This is the repository for the over 10,000 add-on packages developed and contributed for public use.
Notes:

The package name has to be spelled and capitalized correctly
The package name is in quotes

Installing the package only has to be done once. If you update your R version, you may need newer
versions of packages, so you will have to repeat the install.packages().

Linking to a package: library(emmeans)
This loads the package into your working environment. You need to do this every time you start
R (but you don’t have to do it if you’re not going to use any functions from the package). If you
ever get a error message about an unknown function, it probably is because you forgot to load a
package, so R doesn’t know about any of the functions in that package.

Factor variables: diet$trt.f <- as.factor(diet$trt)

The R model fitting functions care a lot about the distinction between a continuous variable and
a factor variable. A continuous variable is used to define a regression (coming in a few weeks); a
factor variable defines groups. The t.test() function didn’t care, because t.test() only compared
means of two groups. Most modeling functions really care about the distinction because a model
using a continuous variable is different from a model using a factor variable.

My practice is to be very clear whether I am treating a variable as continuous or as a factor. I do that
by specifically creating the factor version of a variable whenever I need a factor. The as.factor()

function creates the factor version of any variable. The factor() is related and usually does the
same thing. So, diet$trt.f <- factor(diet$trt) creates a new variable trt.f that is the factor
version of the trt variable. My practice is to create a new variable and give a name that reminds
me of the original variable (trt) and that it is a factor (.f). You can use any variable name you like.

Aside: This practice of explicitly creating a factor variable avoids an unfortunate and almost un-
traceable error. When you use a character variable (not converted to a formula) in an lm() model,

1

R will assume it was meant to be a factor. But, when you use a numeric variable, R will treat it
as numeric and fit a regression model, even when you really wanted to fit an anova model. This
problem is avoided by explicitly converting a variable to a factor when it intended to be used as a
factor.

Fitting an ANOVA model: diet.lm <- lm(longevity ~ trt.f, data=diet)

The lm() function fits a regression or an ANOVA model. When the X variable is a factor, it fits
an ANOVA model. The name to the left of the ∼ is the response variable. The piece to the right
specifies the model to be fit. This example fits a model with a different mean for each diet. The
data= argument specifies the data set in which to “look up” the variable names.

This command fits the model and stores the results in the variable diet.lm. Most interesting results
are obtained by using other functions to extract or calculate interesting things from the fit.

anova() calculates the ANOVA table, the SSE, and dfE for the fitted model. This computes what
are called type I, aka sequential, tests. joint_tests() in the emmeans library computes type III,
aka partial tests. General practice in the US is to prefer type III tests. For a one-way ANOVA,
there is no difference. We will discuss these issues in 571 later in the semester.

After the ANOVA: The emmeans library
I argued in 587 lecture that fitting an ANOVA model and calculating the F statistic is really just
the start of a data analysis. All of what I call “After the ANOVA” is specified by using functions
that do additional calculations from the fitted lm() model. anova() is one of those functions. There
are many others, but most require some understanding of linear model theory to understand the
output.

The emmeans library provides functions that provide easily understood results that are statistically
appropriate. emmeans is the replacement for the lsmeans library, so if you see code referring to
lsmeans, it is conceptually doing the same thing as what emmeans will do. emmeans is actively
maintained; lsmeans is now deprecated.

Before you can do anything useful, you have to fit a model and create an emmeans version of that
model. We’ve already fit a model (stored in diet.lm). Creating the emmeans version is done by the
emmeans() function. The subsequent lines of code are examples of what you can do. None of the
statements after the emmeans() statement depend on any other statement, so each can be used in
isolation or combination.

Create the emmeans object: diet.emm <- emmeans(diet.lm, ’trt.f’)

The emmeans() function creates the emmeans object from a fitted lm() object. This is stored in a
new variable. I call that variable diet.emm to remind me that it deals with the diet data and is a
emmeans object.

The first argument is the fitted lm object; the second is the variable we want to work with. The
variable name is in quotes and must be one of the variables in the fitted model. For the diet analysis,
the variable is trt.f.

2

If you get the error: argument "specs" is missing, with no default, you forgot to name the
factor variable.
If you get the error: No variable named trt in the reference grid, you used the wrong name
in the lsmeans() call. You have to use the name of a variable used on the right-hand side of the
original lm() call. Here that is trt.f, not trt.

Means, se’s and confidence intervals for each group: diet.emm
Printing the emmeans object or using summary() on that object produces a table with estimated
means, standard errors and confidence intervals for each mean.

The output from emmeans() is a table with the group name, the estimated average, the standard
error, the error df, and the 95% confidence interval.

Note: the standard errors and hence the confidence intervals are calculated from the pooled sd.
Hence, the t quantile used to compute the confidence interval is the error df (pooled over all
groups). Both are desired things when the equal variance assumption is reasonable.

To get something other than 95% confidence intervals, use summary(, level=0.90) to specify the
coverage you want.

Specific linear contrasts of means: contrast()
Any specified comparison of means can be computed using the contrast() function. The pairs()
function is actually a front-end to the contrast() function that simplifies getting a common set of
contrasts.

If you want to specify a comparison other than all pairs of differences, you need to provide the
coefficients for your comparison. Lecture has discussed constructing these. One we will discuss
is the comparison between the low protein diet (lopro) and the average of the other 5 diets. The
coefficients of that comparison are 1 for the lopro group and -1/5 for the other five groups. To use
contrast, you must know the order of the groups, so that you can put the 1 “in the right place”.

You can see the order of the groups in at least three ways:
1) Look at the order of the groups in the lsmeans() output.
2) Print the emmeans object.
3) Print the levels of the factor object: levels(trt.f)
Looking at the order that R “sees” is especially important when you have a mix of upper and lower
case names.

The coefficients are specified as a vector, created using c() with commas between the elements.
So you can see the pieces in action separately, the code piece c(1, -1/5,-1/5,-1/5,-1/5,-1/5)

prints the vector of values created by c().

The contrasts are obtained using contrast(). The first argument is the emmeans object. The
second is a list of named vectors, where each vector gives your desired coefficients. lopro is my
name for the contrast that compares lopro to the average of the other five groups. You can use

3

whatever name you like; that name is printed in the output. You can use spaces in the name by
putting the name in quotes. If you only have one comparison, the second argument is something
like list(lopro = c(1, -1/5,-1/5,-1/5,-1/5,-1/5)). The second argument must be a
list, so even when you only have one contrast, it must be inside list().

You can save the contrast output either to print it or to use it for subsequent computations.
summary() applied to contrast output provides additional information about the contrast. Adding
infer= to the summary adds a confidence interval and/or hypothesis test. infer = has a vector of
2 logical values. The first is whether to provide confidence intervals, the second a hypothesis test.
So infer = c(T,T) gives both.

Other things you can do - not needed for 571, but might be useful

Comparison of all pairs of groups: pairs(diet.emm)
The pairs() function computes all pairwise differences. The output is a table with the estimated
difference, the se of that difference (computed from the pooled sd), the error df, the t-statistic
testing H0: difference = 0, and the p-value for that test. Confidence intervals can be obtained by
storing the result from pairs() and passing that into summary(, infer=c(T,F)) or into confint().

By default, pairs uses a Tukey adjustment for multiple comparisons. The adjust= argument changes
that. Many different adjustments are available. Names of the ones we have discussed are: tukey,
bonferroni, none, scheffe, sidak, dunnettx. All of those names go in quotes.

You can save the pairwise summary information. This allows you to perform different adjustments,
e.g., summary(, adjust=’none’); or extract additional information, e.g., confint(); for each contrast.

pairs() is actually creating contrasts for you. It’s just an easy way to specific all pairs of groups.
That means everything you did with the output from pairs (adjustment, confidence intervals, ...)
can be done to the result from contrast. You can also use pipes to pass information from contrast()
to summary().

When you have more than one contrast, you can specify each in a separate call to contrast(),
or provide multiple elements to that list, with commas between each piece, as illustrated in the
code. Notice the comma at the end of lopro = c(1, -1/5,-1/5,-1/5,-1/5,-1/5),. That
comma separates the first contrast (lopro) from the second (‘N/R - R/R’). If you want multiplicity
adjustments, the family size is derived from the number of contrasts in the list you provide.

The default adjustment for all pairs, i.e., using pairs(), is Tukey. The default adjustment for
contrast(), is none.

Linear trend coefficients: linear = c(0, 26.66, -18.33, -8.33, 0, 0)

Most of the contrasts in diet.c2 should be obvious. The linear one requires some explanation. We
want to see if there is a difference between the N/N85, N/R50, and N/R40 diets focusing on a linear
trend in the kcal amount. The kcal amounts are 85, 50, and 40. Their average is 58.333, so the
linear trend coefficients are 85 - 58.33 = 26.66, 50 - 58.33 = -8.33 and 40 - 58.33 = -18.33. The

4

order of groups (from printing the emmeans object) is lopro, N/N85, N/R40, N/R50, NP, R/R50.
So the coefficients are 0 (for lopro) 26.66 (for N/N85), -18.33 (for N/R40) and -8.33 (for N/R50)
and 0 for the other two groups.

5

