
Stat 471/571: Key points and formulae Week 11 - part 1

New question: What should I do when I’ve measured the same e.u. multiple times?

Examples:

• physical therapy: measure of joint flexibility at 0, 1, 2, 3, · · · 10 weeks of therapy

• bioenergy study: 3 substrates, RCBD,
measure amount of product produced after 1, 2, 3, 4 days.

• animal nutrition: 3 diets, RCBD, measure weight at week 0, 1, 2, 4, 6, 8

• corn root worm: 2 insecticide treatments, damage measured 10 times

• asparagus: perennial crop, 4 harvesting intensities, RCBD,
yield measured in years 2, 3, and 4.

An important distinction, are different eu’s measured each time, or are they the same eu?

• Different eu’s: Each eu is measured once. Presumably sampling time randomly as-
signed.

– Corn root worm: Measurements are destructive. A plant can’t be measured twice.
damage over time. 2 way factorial treatment structure:

– No new issues: 2 way factorial, insecticide x meas. time. independent errors

• Same eu’s: More common, more efficient use of resources, since eu’s are often expensive

– New issues: observations over time are probably correlated.

– Repeated measures analysis: accounts for that correlation

– Asparagus cutting study: plot randomly assigned to a treatment. Same trt for
all years

∗ Each plot repeated measured

∗ A plot with a higher than average yield in year 2 is likely to be above average
in years 3 and 4.

∗ Analysis needs to account for the potential correlation within an e.u.

– Most common: treatments randomly assigned once, at start of study.

– No new randomization of treatments each year

∗ Reusing a field for new experiments each year does not create repeated mea-
sures data

∗ So long as not comparing between years

Different sorts of studies with same eu measured multiple times

• Longitudinal study:
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– Subjects randomized to treatment at start

– Measured multiple times. May be regular or irregular intervals.

• Crossover study, usually only two treatments, perhaps 3.

– Subjects randomized to initial treatment

– Half way through, switch to 2nd treatment.

– Commonly, with a “washout” period in between.

– So half the subjects get A followed by B; other half get B followed by A.

– May be measured only at end of each treatment period (one obs per subject and
treatment)

– or multiple times throughout each period.

• Two sizes of eu: longitudinal + crossover

– Subjects randomly assigned to one level of factor A and to order of levels of factor
B

– A is constant over time (as in a longitudinal study)

– B changes over time (as in a crossover study)

Focus (for now) on longitudinal studies. Analysis options:

• Compute a summary statistic for each eu.

– One number for each eu.

– Some possible choices:

∗ Value at last observation time, best when impact is cumulative

∗ Average all observations, best when impact is sharp or total is relevant

∗ Compute slope over time for each subject

– Should be done more often. Simplifies the analysis. See Murdoch paper

• A variation on this:

– Separately analyze each year’s data

– Summary statistic = yield at year 1 for analysis 1

– Yield at year 2 for analysis 2, yield at year 3 for analysis 3

– Simple, effective, well known, but no way to compare between years.

• “Split-plot in time”

– Recognize two sizes of “eu”:
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– subject assigned to treatment

– time “assigned” to observation

– implicitly assumes same correlation between all times

∗ Nutrition study: same correlation between day 1 and 3 as between day 1 and
21

∗ If correlation decays with time, seems unreasonable

• Model correlation as function of time lag

– Correlation between day 1 and 3 larger than that between day 1 and 21

– But correlation between day 1 and 3 same as between day 3 and 5

– Only a function of difference between two times (the lag).

– Various possible models

• Model correlation as a function of starting and stopping time

– Correlation between day 1 and 3 larger than that between day 1 and 21

– And correlation between day 1 and 3 may differ from that between day 3 and 5

– And, as usually implemented, variance on day 1 may differ from that on day 3 or
day 5.

– My (and others’s) experience is this ‘allows” too much.

– Most data sets have more consistencies than this. E.g. constant variance

• Treat all responses from an eu as a vector valued response

– Analyze using MANOVA: Multivariate ANOVA

– Allows arbitrary variance-covariance matrix

∗ correlations can very between intervals

∗ variances at each time may not be the same

– Each treatment has a mean vector

– So null hypothesis is very general: no difference in year 2 and no difference in
year 3, ...

– And MANOVA rejects Ho if there is a difference anywhere

– but doesn’t tell you which times (responses) are different

– So you end up doing separate analyses for each time to find that out.

– I don’t recommend using MANOVA:

∗ The null hypothesis is dumb - too general

∗ The analysis is very sensitive to assumptions, e.g. same VC matrix for all
treatments

∗ Tends to overfit the VC matrix (lots of parameters there if many times)
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∗ Missing one observation (time) on a subject leads to dropping all data for
that subject

Modeling the correlation between observations make on the same e.u.

Basic idea: find a simple but reasonable model for correlations between observations made
at different times on the same eu. Lots of possible models:

• ar(1): autoregressive order 1. 1 parameter for correlation, ρ, 1 for variance.

– correlation declines to 0 with time lag between to observations

– correlation between 1 and 2, or 3 and 4: ρ

– correlation between 1 and 3, or 2 and 4: ρ2

– correlation between 1 and 4: ρ3

• ar(1) + random effect: like ar(1), except that correlation declines to a non-zero value

– Not very popular, but I often find this is fits better than any other model.

• arh(1): ar(1) with different variances for each time point

• and its arh(1) + re extension

• ante-dependence: allows correlation between 1 and 2 to differ from 2 to 3.

• unstructured: no pattern - every correlation and variance is different

Here are all the details: covariance matrices for three repeated measures per e.u.
Remember, a covariance matrix includes the variance of each observation.
The associated correlation matrix does not.

Variance-covariance matrices:
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Independence Split-plot, Compound Symmetry
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Corresponding correlation models

Independence Split-plot 1 0 0
0 1 0
0 0 1

  1 ρ ρ
ρ 1 ρ
ρ ρ 1


AR(1) AR(1) + RE 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

  1 f + (1 − f) ρ f + (1 − f) ρ2

f + (1 − f) ρ 1 f + (1 − f) ρ
f + (1 − f) ρ2 f + (1 − f) ρ 1


ARH(1) ARH(1) + RE 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

 not nice

ANTE(1) UN 1 ρ1 ρ1ρ2
ρ1 1 ρ2
ρ1ρ2 ρ2 1

  1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1
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Summary of characteristics of correlation models

Model Variances Correlations
Independence constant zero, for all pairs of observations
Split-plot constant same for all pairs
AR(1) constant decline with separation

eventually zero
same for 1 to 2 and 2 to 3

AR(1) + RE constant decline to non-zero
ARH(1) different decline with separation
ARH(1) + RE different decline to non-zero
ANTE(1) different decline to zero

different for 1 to 2 and 2 to 3
UN different every pair different

How to choose an appropriate correlation structure?

I suggest three possible ways.

• Your understanding of the data: what is reasonable?

• What has been used in other studies?

• What do these data suggest is a reasonable model?

– Plot correlations between pairs of observations - look at the pattern(s)

– Fit a model and assess how well it fits

– AIC and BIC statistics

∗ used just like you used for variable selection in multiple regression

∗ AIC = −2 log likelihood + 2p

∗ likelihood: measures how well data fit a model. Generalizes sum-of-squares.

∗ concept: fit + penalty for complexity

∗ p: number of parameters in the model

∗ BIC = −2 log likelihood + p logN

∗ logN > 2, for all but the smallest data sets, so larger penalty

– Find the model with the smallest AIC or BIC value

– If REML, need to use the same fixed effect model

– REML should only be used to evaluate the variance/covariance structure

– AICc includes a small sample size “correction”
prefered to AIC, but usually not any different,
unless very small numbers of observations
In which case, any model selection criterion is suspect.

– BIC has a higher penalty for complexity: if different from AIC/AICc, BIC will
choose simpler model
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For the asparagus data:

Model # param AIC AICc BIC
Independence 1 342.0 342.1 343.5
Split-plot 2 337.0 337.4 338.5
AR(1) 2 333.1 333.5 334.6
AR(1)+RE 3 σ̂2

m = 0, so same as AR(1)
ARH(1) 4 335.8 337.2 338.9
ARH(1)+RE 5 σ̂2

m = 0, so same as ARH(1)
ANTE(1) 5 335.7 338.9 340.3
UN 6 335.7 338.9 340.3

ar(1) is the “best” model among those evaluated here.

Effect of correlation structure on results for asparagus study

Model Trt A - Trt B Year 2 - Year 3
s.e. d.f. s.e. d.f.

Independence 12.09 33 10.46 33
Split-Plot 17.84 9 7.82 24
AR(1) 18.34 9.3 6.98 23.1
ARH(1) 18.01 8.53 6.21 20.6
ANTE(1) 18.48 8.74 7.64 12
UN 18.62 8.29 7.49 12

Assuming independence over time produces clearly different results. clearly wrong! Too
small a se for averages of over times, e.g. differences between treatments. Too large a se for
comparisons between times.

Choice of model for correlated data has much less impact on results. Models with lots of
parameters, e.g. UN, ANTE(1), have smaller d.f. and larger s.e. This is a general pattern.
Results in loss of power. Multivariate approach corresponds to UN; also lower power.

Two rep. meas. models with similar AIC and BIC values will usually (but not always) produce
similar (but not same) conclusions about treatment effects (F statistics, p-values, s.e. d.f.).

My advice:

• Can you use a summary statistic to answer your questions? If so, do that and don’t
worry about choosing a correlation model

• If not, use AIC and biological knowledge to choose correlation model. Try to get close
to a reasonable model. Don’t worry too much about getting the model exactly right.
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Final thoughts:

• When only 2 repeated measures, there is only one correlation coefficient. Choice of
models irrelevant, because all will fit the same. The one difference is whether the two
variances are the same or not.

• When 3 repeated measures, there are 3 correlation coefficients (1-2, 2-3, and 1-3). Not
much room for models to differ. My experience is that simpler models are usually
selected.

• When many repeated measures, there are many more correlation coefficients and much
more room for models to differ.

• Remember that AIC/BIC are relative measures. They identify the best fitting among
the models you have specified. The real best model may be something not in the set
you are considering. In other words, AIC/ BIC will identify the best of a bad lot. That
doesn’t mean the selected model is the correct one.

• A residual vs predicted values plot may help you diagnose unequal variances. It will
not help identify correlation patterns.

• It is always possible (code not provided) to compute the correlations between pairs of
times and plot correlation against the time lag. That can help decide among potential
models. And, help you decide whether the “best” model is still a bad fit.

• If in doubt about the correlation model, use all reasonable candidates and see if the
things you really care about (e.g. treatment differences, time differences, or their in-
teraction) change depending on the correlation model. My experience is that usually
they do not, which is reassuring.
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