
Stat 471/571: Key points and formulae Week 15 - response surface models

Experimental design and treatment design

• Two separate aspects of an experimental study
• Treatment design:

– What is done to an experimental unit

– Examples include:

∗ factorial treatment structures (2 way, 3 way)

∗ choice of X values to fit a regression

• Experimental design:
• How treatments are randomized to experimental units
• Examples include:

– Different blocking schemes (RCBD, Latin Square)

– Subsampling

• Every study has a treatment design and an experimental design
• Can combine in all possibilities

– e.g., 2 way factorial done in blocks

Response surface modeling

• Treatment design for fitting regression models

– Usually quadratic polynomials in 2 or more variables

• Most frequently used in engineering
• Goals:

– Most common: find the optimum level of all variables

– Much less common: Does an X have an effect on Y?

– While keeping the number of experimental runs small

• Why quadratic?

– Over a small area of covariate space, any function can be approximated by a 1st
order model

Y = β0 + β1X1 + β2X2 + β3X3 + · · ·+ ε

– Optimal choice of X’s is not defined, on the edge of the covariate space

– Over a larger area of covariate space, any function can be approximated by a 2nd
order model

Y = β0+β1X1+β2X2+β3X3+β4X
2
1+β5X

2
2+β6X

2
3+β7X1X2+β8X1X3+β9X2X3+· · ·+ε

– Note: includes quadratic terms and all pairwise interactions (no 3 way interaction)

– Optimal choice of X ′s is a function of the β’s.

• Need 3 levels of each X to fit the 2nd order model
• Full factorial for 3 factors would require 33 = 27 treatments
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• How can we reduce the number of experimental runs?

Motivating example:

• Organic material can absorb lead, Pb, as Pb(II), from aqueous solutions
• How effective are pistachio shells?

– Currently just waste

• Evaluate 3 variables

– initial pH of solution: 2.0 to 5.5

– concentration of Pb, 5 to 50 ppm

– contact time, 5 to 120 min

• Want to find values of these variables at which extraction of Pb is the greatest

“classical RSM”:

• Seminal paper: Box and Wilson, 1951

– Developed RSM for chemical processes,

– Wrote: “we believe that the methods will be of value in other fields where exper-
imentation is sequential and the error fairly small”

– Proposed the Central Composite Design

• experimental runs conducted sequentially
• Low variability
• So, relatively little replication
• Frequently no replication of many treatments

– Many other designs developed over the last 70 years

– Focus is on reducing the number of runs required

– Or arranging treatments into incomplete blocks

Overall plan:

• Do not replicate all treatments - just one or a few

– Key is small error variance

– So observed value is close to true value

– Some work on RSM for highly variable responses

∗ Requires replication of all treatments, sometimes more than 2 replicates

• Screen variables to focus on ones with large effects
• Choose range of values for each variable ⇒ low, high levels

– mid is average of low, high

• Check whether optimum is likely to be within the range

– If not, change the range(s) and recheck
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• Estimate parameters of the 2nd order model
• Estimate optimum and a confidence region for it

In pictures, from Box and Draper 2006, Response surfaces, mixtures, and ridge analyses,
2nd ed, Wiley, p 484:

Parameterization of RSM models

• Standard coding of levels

– -1: “low” level: often − in design descriptions

– 0: “mid” level

– +1: “high” level: often + in design descriptions

• ‘Sum to zero” constraints (from factorial ANOVA)
• coded levels and actual values related by linear equations
• Use regression to estimate effects

Screening variables

• Goal: identify variables with largest influence on response
• Use a factorial design with 2 levels to see whether X has an effect

– Choose practically relevant low (-1) and high (+1) levels

– Often evaluate 7 or 8 variables

– Use a fractional factorial design to reduce number of treatments

– Fit 1st order model (main effects only)

– Focus on estimates of effects

– May be unreplicated

• Use subset of variables for further experimentation

Checking whether ranges are appropriate

• Want to estimate curvature for each variable

– Need 3 levels
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– Add 2 “center” points (0 for all coded variables)

• Could reuse some of the screening runs
• Better not to

– especially if new data collected on a new day, with different raw materials or
machine calibrations

– I.e., if expect unwanted variability between experimental runs

– Consider screening runs and checking runs as two blocks

• For each variable:

– Mean at center should be larger than average of low and high responses

• If not, expand the range for the offending variable

If uncertain whether range is appropriate

• Add the other half of the fractional factorial + more center points
• Result is a 2k complete factorial plus center points

– Where k is the number of variables under investigation

– More precise estimates of 1st order effects

– and the curvature

Central Composite Design, for k variables

• 3 components:
• Center point: 0 for all coded variables

– Almost always replicated, 3-6 replicates are common

• Cube points: +1 / −1 for all coded variables

– Complete factorial, 2k runs

– Not replicated in low error variance situations

• Axial (“star”) points:

– For each variable:

– α / −α for that variable, 0’s for other variables

– Greatly increases precision of 2nd order coefficients

– And provides extra df to assess lack of fit

– Choosing α: two approaches

∗ Spherical designs

∗ distance from center to axial same as distance from center to cube

∗ α =
√
k

∗ e.g. α =
√

2 = 1.414 for 2 variables,
√

3 = 1.732 for 3 variables

∗ Rotatable designs
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∗ Prediction variance same for all points the same distance from the center

∗ α =
4
√

2k

∗ gives α = 1.414 for 2 variables, 1.68 for 3 variables

– My sense is that spherical is more common

– I don’t see much difference between them

Thoughts about the CCD

• How much does it reduce # runs?

– Depends on # variables

– Without replication in either design:

# variables
Design k = 2 k = 3 k = 4 k = 5

Factorial (3k) 9 27 81 243
CCD 9 15 25 42

Cube (2k) 4 8 16 32
Axial (2k) 4 6 8 10

Center, w/o repl. 1 1 1 1

• Why replicate only one point?

– replication provides an estimate of the error variance

– keep # runs small by not replicating all points

• Why replicate the center point?

– Expect optimum “in the middle” of the design space

∗ more replicates there ⇒ more precise estimate there

– If variance linearly related to levels of a variable

∗ Variance at the center point is the average variance across the design space

• What can you do when there is a boundary to the design space?

– e.g. concentration of a reactant can’t be negative

– want to model response at concentrations close to 0

– Put axial point for that variable at 0

– More common:

∗ Put low edge of cube for that variable at 0

∗ “Pull in” that axial point to 0

∗ No longer statistical optimal, but practically useful

– Or, use a design without axial points
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Box-Behnken designs

• General idea: avoid “extreme” points in the design space

– axial points

– corners of the cube

• Concept, BB compared to spherical CCD:

– spherical CCD: design points are on a sphere, extends beyond the cube

– BB: design points are on a sphere that is completely “inside” the cube

• Points in a BB are closer to the center

– Common to use fewer center reps than in a CCD

– Don’t explore as large as design space

Choosing a design

• Both CCD and BB are effective
• BB requires slightly fewer runs
• CCD is more commonly used

– CCD gives better information about where quadratic approx. “works”

– And can be done in 2 phases:

∗ Phase 1: the factorial “cube”: explore whether a factor has small effects

∗ Could be done in two subphases using fractional factorial designs

∗ Phase 2: the axial and center points - allow fitting quadratics and blocks =
phases

• But, if extreme points are a concern (or not typical), use BB

Why don’t other folks use response surface designs?

• Big debate ca 40 years ago
• A big practical difference

– Missing values are bad news for RSM designs

– Especially for BB designs without a Cube ( a 2k factorial)

– Because RSM deliberately minimizes the number of runs

– Missing cells are bad for complete factorial designs

– But can still estimate lots of relevant quantities

• My resolution is based on the nature of the experiment
• If experimentation is sequential

– I.e., plan next runs after seeing data from early runs

– missing data can be fixed - rerun the missing treatments

• If set up experiment, then wait 4 months for results
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– Care a lot more about robustness to some missing observations

Fractional factorials

• Another design approach to reduce the number of runs while exploring many factors
• Most common designs have 2 levels of each factor. Principles apply to 3 levels per

factor

– Complete factorial with k factors, each with 2 levels, 2k treatments

– Lots of runs, even without any replication: 5 factors: 32 treatments, 8 factors:
264 treatments

• Only use 1/2 of the 2k treatments.
• Example with 3 factors: A B C BC

+ + + +
+ - - +
- + - -
- - + -
+ + - -
+ - + -
- + + +
- - - +

• 23−1 design uses 1st four treatment combinations
• Fit a model: Yij = µ+ βAAi + βBBi + βCCi + εi
• Notice the problem: BC confounded with A
• βA estimates main effect of A and the interaction of B and C
• Fewer runs comes with a cost: estimates assume no 2 way interactions

Fractional factorials: details

• Lots of tables of designs, with or without various choices of blocking
• With 4 or more factors, can choose what is confounded
• Resolution: summarizes the confounding

– Resolution III: estimate main effects, may be confounded with 2 way interactions

– Resolution IV: main effects not confounded with 2 way interactions;
2 way interactions may be confounded with other 2 way

– Resolution V: main effects not confounded with 3 way interactions;
2 way interactions not confounded with other 2 ways
3 way interactions may be confounded with 2 ways

• Deriving designs is an exercise in combinatorics.
• Extensively covered in engineering / industrial design of experiments texts.

Analyzing RSM data

• Fit the 2nd order model, estimate parameters for coded variables
• Now what?
• Is the quadratic model reasonable?
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– Look at residuals, especially standardized residuals

– Are any large (large + or large −)?

– Or do a lack-of-fit test

• Some folks like to simplify the model

– Remove terms that have large p-values

– But respect hierarchy:
don’t remember a linear term if used in a 2nd order term

– My perspective: ok only if subject matter knowledge supports the simplification

• Estimate the location of the maximum

– 1 variable: Y = β0 + β1X + β2X
2

– Maximum / minimum is Xopt = −β̂1/(2β̂2)
– k variables: solve system of k equations

• Check whether it is maximum, minimum or saddlepoint

– Can be done from the eigenvalues of the Hessian matrix

– reported by most response-surface fitting algorithms

• There are methods to compute a confidence region for the optimum
• Specialized software for fitting response surfaces:

– SAS: RSREG

– R: rsm() in rsm package

– JMP: use the Response surface macro in the fit model box

• Software provides

– Whether max, min, or saddle point

– Estimate of the optimum

– Can get the confidence region for the optimum

8


