Chapter 13

lete Block

We now begin the study of variance reduction design. Experimental error
makes inference difficult. As the variance of experimental error (0'?) in-
creases, confidence intervals get longer and test power decreases. All other
things being equal, we would thus prefer to conduct our experiments with
units that are homogeneous so that o2 will be small. Unfortunately, all other
things are rarely equal. For example, there may be few units available, and
we must simply take what we can get. Or we might be able to find homoge-
neous units, but using the homogeneous units would restrict our inference to
a subset of the population of interest. Variance reduction designs can give us
many of the benefits of small 0 without necessarily restricting us to a subset
of the population of units.

13.1 Blocking

Variance reduction design deals almost exclusively with a technique called
blocking. A block of units is a set of units that are homogeneous in some
sense. Perhaps they are field plots located in the same general area, or are
samples analyzed at about the same time, or are units that came from a single
supplier. These similarities in the units themselves lead us to anticipate that
units within a block may also have similar responses. So when constructing
blocks, we try to achieve homogeneity of the units within blocks, buf units in

Variance
reduction design

A block is a set of
homogeneous
units

different blocks may be dissimilar.

Blocking designs are not completely randomized designs. The Random-
ized Complete Block design described in the next section is the first design
we study that uses some kind of restricted randomization. When we design
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an experiment, we know the design we choose to use and thus the random-
ization that is used. When we look at an experiment designed by someone
else, we can determine the design from the way the randomization was done,
that is, from the kinds of restrictions that were placed on the randomization,
not on the actual outcome of which units got which treatments.

There are many, many blocking designs, and we will only cover some
of the more widely used designs. This chapter deals with complete block
designs in which every treatment is used in every block; later chapters deal
with incomplete block designs (not every treatment is used in every block)
and some special block designs for treatments with factorial structure.

13.2 The Randomized Complete Block Design

The Randomized Complete Block design (RCB) is the basic blocking design.
There are ¢ treatments, and each treatment will be assigned to 7 units for a
total of N = gr units. We partition the IV units into r groups of g units each;
these r groups are our blocks. We make this partition into blocks in such
a way that the units within a block are somehow alike; we anticipate that
these alike units will have similar responses. In the first block, we randomly
assign the g treatments to the g units; we do an independent randomization,
assigning treatments to units in each of the other blocks. This is the RCB
design.

Blocks exist at the time of the randomization of treatments to units. We
cannot impose blocking structure on a completely randomized design after
the fact; either the randomization was blocked or it was not.

Mealybugs on cycads

Modern zoos try to reproduce natural habitats in their exhibits as much as
possible. They therefore use appropriate plants, but these plants can be in-
fested with inappropriate insects. Zoos need to take great care with pesti-
cides, because the variety of species in a zoo makes it more likely that a
sensitive species 1s present.

Cycads (plants that look vaguely like palms) can be infested with mealy-
bug, and the zoo wishes to test three treatments: water (a control), horti-
cultural oil (a standard no-mammalian-toxicity pesticide), and fungal spores
in water (Beauveria bassiana, a fungus that grows exclusively on insects).
Five infested cycads are removed to a testing area. Three branches are ran-
domly chosen on each cycad, and two 3 cm by 3 cm patches are marked on
each branch; the number of mealybugs in these patches is noted. The three
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Table 13.1: Changes in mealybug counts on cycads after treatment.
Treatments are water, Beauveria bassiana spores, and horticultural oil.

Plant

1 2 3 4 5

Water -9 18 10 9 -6
-6 5 9 0 13

Spores -4 29 4 -2 11
7 10 -1 6 -1

Oil 4 29 14 14 7
11 36 16 18 15

branches on each cycad are randomly assigned to the three treatments. After
three days, the patches are counted again, and the response is the change in
the number of mealybugs (before — after). Data for this experiment are given
in Table 13.1 (data from Scott Smith).

How can we decode the experimental design from the description just
given? Follow the randomization! Looking at the randomization, we see that
the treatments were applied to the branches (or pairs of patches). Thus the
branches (or pairs) must be experimental units. Furthermore, the randomiza-
tion was done so that each treatment was applied once on each cycad. There
was no possibility of two branches from the same plant receiving the same
treatment. This is a restriction on the randomization, with cycads acting as
blocks. The patches are measurement units. When we analyze these data, we
can take the average or sum of the two patches on each branch as the response
for the branch. To recap, there were g = 3 treatments applied to N = 15
units arranged in 7 = 5 blocks of size 3 according to an RCB design; there
were two measurement units per experimental unit.

Why did the experimenter block? Experience and intuition lead the ex-
perimenter to believe that branches on the same cycad will tend to be more
alike than branches on different cycads—genetically, environmentally, and
perhaps in other ways. Thus blocking by plant may be advantageous.

It is important to realize that tables like Table 13.1 hide the randomization
that has occurred. The table makes it appear as though the first unit in every
block received the water treatment, the second unit the spores, and so on.
This is not true. The table ignores the randomization for the convenience of
a readable display. The water treatment may have been applied to any of the
three units in the block, chosen at random.

You cannot determine the design used in an experiment just by looking at
a table of results, you have to know the randomization. There may be many
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different designs that could produce the same data, and you will not know
the correct analysis for those data without knowing the design. Follow the
randomization to determine the design.

An important feature to note about the RCB is that we have placed no
restrictions on the treatments. The treatments could simply be g treatments,
or they could be the factor-level combinations of two or more factors. These
factors could be fixed or random, crossed or nested. All of these treatment
structures can be incorporated when we use blocking designs to achieve vari-
ance reduction.

Protein/amino acid effects on growing rats

Male albino laboratory rats (Sprague-Dawley strain) are used routinely in
many kinds of experiments. Proper nutrition for the rats is important. This
experiment was conducted to determine the requirements for protein and the
amino acid threonine. Specifically, this experiment will examine the factorial
combinations of the amount of protein in diet and the amount of threonine in
diet. The general protein in the diet is threonine deficient. There are eight
levels of threonine (.2 through .9% of diet) and five levels of protein (8.68,
12, 15, 18, and 21% of diet), for a total of 40 treatments.

Two-hundred weanling rats were acclimated to cages. On the second
day after arrival, all rats were weighed, and the rats were separated into five
groups of 40 to provide groupings of approximately uniform weight. The
40 rats in each group were randomly assigned to the 40 treatments. Body
weight and food consumption were measured twice weekly, and the response
we consider is average daily weight gain over 21 days.

This is a randomized complete block design. Initial body weight is a
good predictor of body weight in 3 weeks, so the rats were blocked by initial
weight in an attempt to find homogeneous groups of units. There are 40
treatments, which have an eight by five factorial structure.

13.2.1 Why and when to use the RCB

We use an RCB to increase the power and precision of an experiment by
decreasing the error variance. This decrease in error variance is achieved
by finding groups of units that are homogeneous (blocks) and, in effect,
repeating the experiment independently in the different blocks. The RCB
is an effective design when there is a single source of extraneous variation
in the responses that we can identify ahead of time and use to partition the
units into blocks. Blocking is done at the time of randomization; you can’t
construct blocks after the experiment has been run.
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There is an almost infinite number of ways in which units can be grouped
into blocks, but a few examples may suffice to get the ideas across. We would
like to group into blocks on the basis of homogeneity of the responses, but
that 1s not possible. Instead, we must group into blocks on the basis of other
similarities that we think may be associated with responses.

Some blocking is fairly obvious. For example, you need milk to make
cheese, and you get a new milk supply every day. Each batch of milk makes
slightly different cheese. If your batches are such that you can make several
types of cheese per batch, then blocking on batch of raw material is a natural.

Units may be grouped spatially. For example, some units may be located
in one city, and other units in a second city. Or, some units may be in cages
on the top shelf, and others in cages on the bottom shelf. It is common for
units close in space to have more similar responses, so spatial blocking is
also common.

Units may be grouped temporally. That is, some units may be treated or
measured at one time, and other units at another time. For example, you may
only be able to make four measurements a day, and the instrument may need
to be recalibrated every day. As with spatial grouping, units close in time
may tend to have similar responses, so temporal blocking is common.

Age and gender blocking are common for animal subjects. Sometimes
units have a “history.” The number of previous pregnancies could be a block-
ing factor. In general, any source of variation that you think may influence the
response and which can be identified prior to the experiment 1s a candidate
for blocking.

13.2.2  Analysis for the RCB

Now all the hard work in the earlier chapters studying analysis methods pays
off. The design of an RCB is new, but there is nothing new in the analysis of
an RCB. Once we have the correct model, we do point estimates, confidence
intervals, multiple comparisons, testing, residual analysis, and so on, in the
same way as for the CRD.

Let y;; be the response for the ith treatment in the jth block. The standard
model for an RCB has a grand mean, a treatment effect, a block effect, and
experimental error, as in

Yij = pt o + B+ €5

This standard model says that treatments and blocks are additive, so that
treatments have the same effect in every block and blocks only serve to shift
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Tigure 13.1: Models for a Randomized Complete Block.

the mean response up or down. Hasse diagrams (a) or (c) in Figure 13.1
correspond to this standard model.

To complete the model, we must decide which terms are random and
which are fixed; we must also decide whether to use the standard additive
model given above or to allow for the possibility that treatments and blocks
interact, Fortunately, all variations lead to the same operational analysis pro-
cedure for the RCB design. Figure 13.1 shows Hasse diagrams for four dif-
ferent sets of assumptions for the RCB. Panels (a) and (b) assume the blocks
are fixed, and panels (c) and (d) assume the blocks are random. Panels (a)
and (c) assume that blocks do not interact with treatments (as in the standard
model above), and panels (b) and (d) include an interaction between blocks
and treatments. In all four cases, we will use the (r — 1)(g — 1) degree of
freedom term below treatments as the denominator for treatments. This 1s
true whether we think that the treatments are fixed or random; what differs is
how this denominator term is interpreted.
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In panels (a) and (c), where we assume that blocks and treatments are
additive, the (r — 1)(g — 1) degree of freedom term is the usual error and
the only random term below treatments. In panel (d), this term is the block
by treatment interaction and is again the natural denominator for treatments.
In panel (b), the correct denominator for treatments is “error,” but “error”
cannot be estimated because we have 0 degrees of freedom for error (only
one observation for each treatment in each block). Instead, we must use the
block by treatment interaction as a surrogate for error and recognize that this
surrogate error may be too large if interaction is indeed present. Thus we will
arrive at the same inferences regardless of our assumptions on randomness
of blocks and interaction between treatments and blocks.

The computation of estimated effects, sums of squares, contrasts, and so
on is done exactly as for a two-way factorial. In this the model we are using
to analyze an RCB is just the same as a two-way factorial with replication
n = 1, even though the design of an RCB is not the same.

One difference between an RCB and a factorial is that we do not try
to make inferences about blocks, even though the machinery of our model
allows us to do so. The reason for this goes back to thinking of F-tests as
approximations to randomization tests. Under the RCB randomization, units
are assigned at random to treatments, but units always stay in the same block.
Thus the block effects and sums of squares are not random, and there is no
test for blocks; blocks simply exist. More pragmatically, we blocked because
we believed that the units within blocks were more similar, so finding a block
egffect is not a major revelation.

Mealybugs, continued

We take as our response the mean of the two measurements for each branch
from Table 13.1. The ANOVA table follows:

DF SS MS F-stat p-value
Blocks 4 6864 171.60
Treatments 2 43203 21602 122 .0037
Error 8 141.8 17.725

There is fairly strong evidence for differences in mealybugs between the
treatments, and there is no evidence that assumptions were violated.

Looking more closely, we can use pairwise comparisons to examine the
differences. We compute the pairwise comparisons (HSD’s or LSD’s or
whatever) exactly as for ordinary factorial data. The underline diagram below
shows the HSD at the 5% level:

Denominator for
treatments is
(r—1)g—-1)
degree of
freedom
interaction or
error

Do not test
blocks—they
were not
randomized

Example 13.3
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Here we see that spores treatment cannot be distinguished from the control
(water) treatment, but both can be distinguished from the oil treatment.

The usual assumption made for an RCB model is that blocks and treat-
ments do not interact. To some degree this assumption is forced on us, be-
cause as we saw from the Hasse diagrams, there is little we can do besides
assume additivity. When the treatments have a factorial structure, we could
have a model with blocks random and interacting with the various factors. In
such a model, the error for factor A would be the A by block interaction, the
error for factor B would be the B by block interaction, and so on. However,
the standard model allows treatment factors to interact, whereas blocks are
still additive.

Assuming that blocks and treatments are additive does not make them
so. One thing we can do with potential interaction in the RCB is investi-
gate transformable nonadditivity using Tukey one-degree-of-freedom proce-
dures. When there is transformable nonadditivity, reexpressing the data on
the appropriate scale can make the data more additive. When the data are
more additive, the term that we use as error contains less interaction and is a
better surrogate for error.

13.2.3 How well did the blocking work?

The gain from using an RCB instead of a CRD is a decrease in error yariance,
and the loss is a decrease in error degrees of freedom by (r —1). This loss is
only severe for small experiments. How can we quantify our gain or loss from
an RCB? As discussed above, the “F-test” for blocks does not correspond to
a valid randomization test for blocks. Even if it did, knowing simply that the
blocks are not all the same does not tell us what we need to know: how much
have we saved by using blocks? We need something other than the F-test to
measure that gain.

Suppose that we have an RCB and a CRD to test the same treatments;

both designs have the same total size N, and both use the same population of
units. The efficiency of the RCB relative to the CRD is the factor by which

Relative
efficiency
measures sample
size savings

the sample size of the CRD would need to be increased to have the same in-
formation as the RCB. (Information is a technical term; think of two designs
with the same information as having approximately the same power or yield-
ing approximately the same length of confidence intervals.) For example,
if an RCB with fifteen units has relative efficiency 2, then a CRD using the
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same population of units would need 30 units to obtain the same information.
Units almost always translate to time or money, so reducing IV by blocking
1s one good way to save money.

Efficiency is denoted by E with a subscript to identify the designs be-
ing compared. The relative efficiency of an RCB to a CRD is given in the
following formula:

E (Ve + 1) (Vera + 3) 0%
RCB:CRD (rep + 3) (Vera + 1) 02,

where agr 4 and agcb are the error variances for the CRD and RCB, v, =

(r — 1)(g — 1) is the error degrees of freedom for the RCB design, and
Verg = (r — 1)g is the error degrees of freedom for the CRD of the same
size. The first part is a degrees of freedom adjustment; variances must be
estimated and we get better estimates with more degrees of freedom. The
second part is the ratio of the error variances for the two different designs.
The efficiency is determined primarily by this ratio of variances; the degrees
of freedom adjustment is usually a smaller effect.

We will never know the actual variances afr g Or crfcb; we must estimate
them. Suppose that we have conducted an RCB experiment. We can estimate

afcb using M Sg for the RCB design. We estimate orf,rd via

52 (r —1)MSpioeks + ((g—=1) + (r —1)(g — 1)) M Sg
erd (r—1)+(g-1)+—1)(g-1)

This is the weighted average of M Spjoeks and M Sg with M Spjocks having
weight equal to the degrees of freedom for blocks and M Sg having weight
equal to the sum of the degrees of freedom for treatment and error. This is
not the result of simply pooling sums of squares and degrees of freedom for
blocks and error in the RCB.

Mealybugs, continued

For the mealybug experiment, we have g = 3,7 = 5, pop = (r—1)(g—1) =
8, Verg =7(g — 1) = 12, M Spjocks = 171.6, and M Sg = 17.725, so we get

- 4% 171.6 + (2 +8) x 17.725
2 = = 61.69
JCTd 4 + 2 + 8 )
(Vrcb + 1)(Vcrd + 3) 9 x 15 — 944
(Vrcb + 3)(Vcrd + 1) 11 x 13 . )

(Vrcb + 1)(Vcrd + 3) 5§Td
(Vrep + 3)(Verqa + 1) M SE ,

ERcr:cRD =

Relative
efficiency is the
ratio of variances
times a degrees
of freedom
adjustment

Estimate o2,
with a weighted
average of M Sk

and MSBlocks

Example 13.4



324

Complete Block Designs

Balance makes
inference easier

Treatments
adjusted for
blocks

Example 13.5

61.
61.09 _ 5 99

= 04 —
944 X 7795

We had five units for each treatment, so an equivalent CRD would have
needed 5 % 3.29 = 16.45, call it seventeen units per treatment. This blocking
was rather successful. Observe that even in this fairly small experiment, the
loss from degrees of freedom was rather minor.

13.2.4 Balance and missing data

The standard RCB is balanced, in the sense that each treatment occurs once in
each block. Balance was helpful in factorials, and it is helpful in randomized
complete blocks for the same reason: it makes the calculations and inference
easier. When the data are balanced, simple formulae can be used, exactly
as for balanced factorials. When the data are balanced, adding 1 million
to all the responses in a given block does not change any contrast between
treatment means.

Missing data in an RCB destroy balance. The approach to inference is to
look at treatment effects adjusted for blocks. If the treatments are themselves
factorial, we can compute whatever type of sum of squares we feel is appro-
priate, but we always adjust for blocks prior to treatments. The reason is that
we believed, before any experimentation, that blocks affected the response.
We thus allow blocks to account for any variability they can before exam-
ining any additional variability that can be explained by treatments. This
“ordering” for sums of squares and testing does not affect the final estimated
effects for either treatments or blocks.

13.3  Latin Squares and Related Row/Column Designs

Randomized Complete Block designs allow us to block on a single source of
variation in the responses. There are experimental situations with more than
one source of extraneous variation, and we need designs for these situations.

Addled goose eggs

The Canada goose (Branta canadensis) is-a magnificent bird, but it can be
4 nuisance in urban areas when present in large numbers. One population
control method is to addle eggs in nests to prevent them from hatching. This
method may be harmful to the adult females, because the females fast while
incubating and tend to incubate as long as they can if the eggs are unhatched.




