
dietall.r: Explanation of code

Goals of code:

• Fitting ANOVA models

– plotting residuals against predicted values

– comparing models

• “After the ANOVA”

– estimating group means and standard errors

– estimating linear combinations of means

– all pairwise differences

– common multiple comparisons adjustments

This code requires functions in an add-on packages, emmeans (for after the ANOVA). You will have
to download them and install them once (that’s why the code is commented out). You will have to
enable the library, using library(), each time you start R.

Installing a new package (reminder): install.packages(’emmeans’)
This will link to one of the many mirror sites for CRAN, the Comprehensive R Archive Network.
This is the repository for the over 10,000 add-on packages developed and contributed for public use.
Notes:

The package name has to be spelled and capitalized correctly
The package name is in quotes

Installing the package only has to be done once. If you update your R version, you may need newer
versions of packages, so you will have to repeat the install.packages().

Linking to a package (reminder): library(emmeans)
This loads the package into your working environment. You need to do this every time you start
R (but you don’t have to do it if you’re not going to use any functions from the package). If you
ever get a error message about an unknown function, it probably is because you forgot to load a
package, so R doesn’t know about any of the functions in that package.

Factor variables: diet$diet.f <- as.factor(diet$diet)

The R model fitting functions care a lot about the distinction between a continuous variable and
a factor variable. A continuous variable is used to define a regression (coming in a few weeks); a
factor variable defines groups. The t.test() function didn’t care, because t.test() only compared
means of two groups. Most modeling functions really care about the distinction because a model
using a continuous variable is different from a model using a factor variable.

My practice is to be very clear whether I am treating a variable as continuous or as a factor. I do that
by specifically creating the factor version of a variable whenever I need a factor. The as.factor()

1

function creates the factor version of any variable. The factor() is related and usually does the
same thing. So, diet$diet.f <- factor(diet$diet) creates a new variable diet.f that is the
factor version of the diet variable. My practice is to create a new variable and give a name that
reminds me of the original variable (diet) and that it is a factor (.f). You can use any variable name
you like.

Aside: This practice of explicitly creating a factor variable avoids an unfortunate and almost un-
traceable error. When you use a character variable (not converted to a formula) in an lm() model,
R will assume it was meant to be a factor. But, when you use a numeric variable, R will treat it
as numeric and fit a regression model, even when you really wanted to fit an anova model. This
problem is avoided by explicitly converting a variable to a factor when it intended to be used as a
factor.

Fitting an ANOVA model: diet.lm <- lm(longevity ~ diet.f, data=diet)

The lm() function fits a regression or an ANOVA model. When the X variable is a factor, it fits
an ANOVA model. The name to the left of the ∼ is the response variable. The piece to the right
specifies the model to be fit. This example fits a model with a different mean for each diet. The
data= argument specifies the data set in which to “look up” the variable names.

This command fits the model and stores the results in the variable diet.lm. Most interesting results
are obtained by using other functions to extract or calculate interesting things from the fit.

anova() calculates the ANOVA table, the SSE, and dfE for the fitted model.

Fitting a separate means ANOVA model: diet.lm0 <- lm(longevity ~ 1, data=diet)

Same syntax as before, except that the model (right-hand side) is only an intercept (single mean
for all observations). The 1 is necessary on the right-hand side. R does not let you type ~ ,, i.e.
leave the left-hand side blank. The 1 specifies an intercept. Again, anova() gives the SSE and dfE
for that model.

Explicitly comparing two models: anova(diet.lm0, diet.lm);

The “one model” ANOVA() function compares the specified model to a “likely” simpler one. For
models like diet.lm, that simpler model is the intercept only model.

Sometimes, you want to specifically indicate what two models you want to compare. You can specify
both to ANOVA, the simpler model first. The output is formatted slightly differently, but you get
the same result.

Assessing assumptions (reminder): A residual vs predicted value plot is obtained just as it
was for a t-test. You save the fitted lm() model, then use predict() and resid() to extract predicted
values and residuals for each observation. Then plot those.

Assessing assumptions - 2 resid_panel(): The resid_panel() function in the ggResidpanel
library is a quick way to plot multiple diagonstic plots. The argument is the object containing
the model fit. The default panel of plots includes the residual vs predicted value plot, a normal

2

quantile-quantile plots, an index plot (X = observation number) and a histogram. The last 3 all
plot residuals. resid_panel() has many options, e.g. to choose plots or types of residuals. See
?resid_panel to see the various options.

Looking at specific pairs:
R does not make it easy to look at specific pairs. That can be done by adapting the more general
techniques in the next block of material.

After the ANOVA: The emmeans library
I argued in lecture that fitting an ANOVA model and calculating the F statistic is really just the
start of a data analysis. All of what I call “After the ANOVA” is specified by using functions that
do additional calculations from the fitted lm() model. anova(), resid(), and predict() are three
of those functions. There are many others, but most require some understanding of linear model
theory to understand the output.

The emmeans library provides functions that provide easily understood results that are statistically
appropriate. emmeans is the replacement for the lsmeans library, so if you see code referring to
lsmeans, it is conceptually doing the same thing as what emmeans will do. emmeans is actively
maintained; lsmeans is now deprecated.

Before you can do anything useful, you have to fit a model and create an emmeans version of that
model. We’ve already fit a model (stored in diet.lm). Creating the emmeans version is done by the
emmeans() function. The subsequent lines of code are examples of what you can do. None of the
statements after the emmeans() statement depend on any other statement, so each can be used in
isolation or combination.

Create the emmeans object: diet.emm <- emmeans(diet.lm, ’trt.f’)

The emmeans() function creates the emmeans object from a fitted lm() object. This is stored in a
new variable. I call that variable diet.emm to remind me that it deals with the diet data and is a
emmeans object.

The first argument is the fitted lm object; the second is the variable we want to work with. The
variable name is in quotes and must be one of the variables in the fitted model. For the diet analysis,
the variable is trt.f.

If you get the error: argument "specs" is missing, with no default, you forgot to name the
factor variable.
If you get the error: No variable named diet in the reference grid, you used the wrong
name in the lsmeans() call. You have to use the name of a variable used on the right-hand side of
the original lm() call. Here that is trt.f, not diet.

Means, se’s and confidence intervals for each group: diet.emm
Printing the emmeans object or using summary() on that object produces a table with estimated
means, standard errors and confidence intervals for each mean.

3

The output from emmeans() is a table with the group name, the estimated average, the standard
error, the error df, and the 95% confidence interval.

Note: the standard errors and hence the confidence intervals are calculated from the pooled sd.
Hence, the t quantile used to compute the confidence interval is the error df (pooled over all
groups). Both are desired things when the equal variance assumption is reasonable.

To get something other than 95% confidence intervals, use summary(, level=0.90) to specify the
coverage you want.

From here on down shows you how to do computations discussed in Chapter 6.

Specific linear contrasts of means: contrast()
Any specified comparison of means can be computed using the contrast() function. The pairs()
function is actually a front-end to the contrast() function that simplifies getting a common set of
contrasts.

If you want to specify a comparison other than all pairs of differences, you need to provide the
coefficients for your comparison. Lecture has discussed constructing these. One we will discuss
is the comparison between the low protein diet (lopro) and the average of the other 5 diets. The
coefficients of that comparison are 1 for the lopro group and -1/5 for the other five groups. To use
contrast, you must know the order of the groups, so that you can put the 1 “in the right place”.

You can see the order of the groups in at least four different ways:
1) Look at the order of the groups in the lsmeans() output.
2) Print the emmeans object.
3) Look at the sorted order of unique diet values: sort(unique(diet))
4) Look at the sorted order of the unique diet factor values.sort(unique(diet.f))
In all cases, lopro is the first group.

The coefficients are specified as a vector, created using c() with commas between the elements.
So you can see the pieces in action separately, the code piece c(1, -1/5,-1/5,-1/5,-1/5,-1/5)

prints the vector of values created by c().

The contrasts are obtained using contrast(). The first argument is the emmeans. The second is
a list of named vectors, where each vector gives your desired coefficients. lopro is my name for
the contrast that compares lopro to the average of the other five groups. You can use whatever
name you like; that name is printed in the output. You can use spaces in the name by putting
the name in quotes. If you only have one comparison, the second argument is something like
list(lopro = c(1, -1/5,-1/5,-1/5,-1/5,-1/5)). The second argument must be a list,

so even when you only have one contrast, it must be inside list().

When you have more than one contrast, you can specify each in a separate call to contrast(),
or provide multiple elements to that list, with commas between each piece, as illustrated in the
code. Notice the comma at the end of lopro = c(1, -1/5,-1/5,-1/5,-1/5,-1/5),. That

4

comma separates the first contrast (lopro) from the second (‘N/R - R/R’). If you want multiplicity
adjustments, the family size is derived from the number of contrasts in the list you provide.

The output is a table with the estimated difference, the se of that difference (computed from the
pooled sd), the error df, the t-statistic testing H0: difference = 0, and the p-value for that test.
Confidence intervals can be obtained by storing the result from contrast() and passing that into
summary(, infer=c(T,F)) or into confint().

Comparison of all pairs of groups: pairs(diet.emm)
The pairs() function computes all pairwise differences. By default, pairs uses a Tukey adjustment
for multiple comparisons. The adjust= argument changes that. Many different adjustments are
available. Names of the ones we have discussed are: tukey, bonferroni, none, scheffe, sidak, dunnettx.
All of those names go in quotes.

You can save the pairwise summary information. This allows you to perform different adjustments,
e.g., summary(, adjust=’none’); or extract additional information, e.g., confint(); for each contrast.

pairs() is actually creating contrasts for you. It’s just an easy way to specific all pairs of groups.
That means everything you did with the output from pairs (adjustment, confidence intervals, ...)
can be done to the result from contrast. You can also use pipes to pass information from contrast()
to summary().

The default adjustment for all pairs, i.e., using pairs(), is Tukey. The default adjustment for
contrast(), is none.

Linear trend coefficients: linear = c(0, 26.66, -18.33, -8.33, 0, 0)

Most of the contrasts in diet.c2 should be obvious. The linear one requires some explanation. We
want to see if there is a difference between the N/N85, N/R50, and N/R40 diets focusing on a linear
trend in the kcal amount. The kcal amounts are 85, 50, and 40. Their average is 58.333, so the
linear trend coefficients are 85 - 58.33 = 26.66, 50 - 58.33 = -8.33 and 40 - 58.33 = -18.33. The
order of groups (from printing the emmeans object) is lopro, N/N85, N/R40, N/R50, NP, R/R50.
So the coefficients are 0 (for lopro) 26.66 (for N/N85), -18.33 (for N/R40) and -8.33 (for N/R50)
and 0 for the other two groups.

5

