
light.r: Explanation

Goals of code:

• Do analysis by subgroups

• Fit models to both subgroups (ANCOVA, heterogeneous slopes regr.)

This lab uses the light.txt data set. This is case study 9.1 in the book. The study
examined two groups of plants (E: early and L: late) at a range of light intensities.
The response is the # of flowers produced. We want to fit regression lines that
include both group and intensity.

Find unique values of a variable: unique()
Many times it is helpful to ask R to give you the unique values of a variable. That’s
what unique() does. I use unique() a lot when I am checking for mistakes in a
data set. In the light data set, time should be E or L. If unique() returns e, E,
l, and L, there are one or more data entry errors. An analysis on the time==’E’

subset will ignore the observations with ’e’.

Do an analysis by subgroups: subset()
meat.r in Lab 6 introduced subset() . The meat.r explanation document described
many of the logical operators that you can use with subset() to extract a subset
of observations. We remind you about this here. The two arguments to subset()
are the name of a data frame followed by a logical expression. You do not need
to repeat the name of the data frame. == is the logical equals. So time==’E’ is
true for all observations in the Early group (with a time value of “E”). subset()
extracts and returns all rows where the logical expression is true. When the result
of subset() is saved in a new data frame, that new data frame has only one group.

Analyze a subgroup “on the fly”: subset=
Most of the R model fitting functions, e.g., lm(), accept a subset= argument that
defines the subset of observations to be included in the analysis. The right-hand-
side of the = is (usually) the result of a logical expression. My practice is to put
the logical expression inside (). This is usually not necessary but critical when it
is.

Analyze all subgroups: by()
We have seen the dplyr functions group_by() and summarize(). This information

1

is in patty.r (Lab 6 for F 2018). These set up, compute, and store summary
statistics for subgroups of observations. However summarize is limited to a small
set of functions that return descriptive statistics. The lm() function returns a lot
of pieces of information, so you can’t use summarize() with it. The by() function
is a more general way to analyze subgroups.

The base R by() function provides a way to run a specified function on all subsets
of the data. The three arguments are:

a data frame
a vector defining the subgroups, this must be written out (unlike subset)
the function to be run on each subgroup.

A simple version, repeating what summarize will do without some of the benefits
of summarize is by(light$flowers, light$time, mean). Because mean expects
a vector, the data frame going into by() is reduced to just the column with the
number of flowers. The subgroup vector can not be “shortcut”, i.e. even though
time is (or was) in light, you must write light$time.

We want to get summaries of the regressions for each group. That means we want
to run summary(lm(flowers~intensity)) on the “E” subgroup, then on the “L”
subgroup. The simplest way to do this is to write a function that accepts the data
frame containing a subset then does what we want. This function can be one line
or many lines.

Defining a function: function(x) { }

Functions work by accepting one (or more) arguments, doing something using
those arguments, and returning a result. So, myanalysis <- function(x) de-
fines a function named myanalysis which accepts one argument. The function is
used by myanalysis(lightE), which calls the myanalysis function with the lightE
dataframe. Inside the function, there is no reference to lightE. Inside the function,
the argument is called x because of the x in function(x). Because of this “argu-
ment passing”, a function can be used with many different sets of data. You just
call the function with the name of the data to be used. You don’t have to x as the
internal name. You can choose whatever you want; I recommend something that
helps you understand what your function is doing.

Note: if you wanted to pass two different arguments to the function name, the defi-
nition would be function(x1, x2) and called by name(argument1, argument2).

The R code inside {} specifies what the function is to do with its argument(s). This

2

goes inside the squiggly braces {}. To get the summary of an lm() fit to the data
frame named x, we would write summary(lm(flowers ~ intensity, data=x)).
Or, you could write the function as two lines:
fit <- lm(flowers ~ intensity, data=x)

summary(fit)

The result of the function is the last unsaved result. In the two line version of the
function, the result of lm() is saved in fit, so it can be used in summary(). The
result of summary() is not saved. That output is what the function returns. Any
variables defined inside a function disappear when the function finishes.

Putting the pieces together:
Define the desired function:

myanalysis <- function(x) {summary(lm(flowers~intensity, data=x))}

Run the function on one data set to test it:
myanalysis(lightE)

Use by() to run the function on all subsets:
by(light, light$time, myanalysis)

Creating indicator variables automatically: factor(time)
When a variable is defined as a factor, R creates indicator variables automati-
cally. The R default is that the FIRST level gets the 0 value. (Note: this can
be changed. Ask me if you want to see how). You can create the factor ver-
sion of the variable in the data frame: light$time.f <- factor(light$time)

then include time.f in the lm() model, or you can create the factor “on the fly”:
light.lm1b <- lm(flowers ~ factor(time) + intensity, data=light). I pre-
fer to create a new variable because it simplifies predicting new observations.

If you look at the output from summary(), you see a line for time.fL. This is the
name of the factor concatenated with the level of the indicator that had the value
of 1.

Confidence intervals for model parameters: confint(light.lm1)
The confint() function provides confidence intervals for all the model parameters.
These are T-statistic based intervals, because errors are assumed to be normal.

Viewing the values for an R created indicator: model.matrix()
After fitting a model, you can view the matrix of all X variables used for that
fit by model.matrix(). The argument is the name of an lm() fit. This is espe-
cially helpful when there are factors in the model, because model.matrix() will

3

return columns for each indicator variable. If there are no factors, the result from
model.matrix() is just the model variables from the original data frame.

Fitting ANCOVA models:
light.lm1 <- lm(flowers ~ time.f + intensity, data=light)

An ANCOVA model has groups with different intercepts but the same slope. We
will let R automatically create indicator variables for the two time groups, then
use those to define different intercepts.

fitting ANCOVA models with more interpretable intecept values:
light.lm1 <- lm(flowers ~ -1 + time.f + intensity, data=light)

The intercepts estimated using the previous model are combinations of the overall
intercept (β0) and the difference between the group-specific intercepts. This is
a consequence of including the overall intercept in the model. Remember our
discussion of overparameterized models. Same consequences here. If you omit the
overall intercept, the estimates are the group-specific intercepts.

You tell R to omit the intercept by adding -1 to the model.

The intercepts reported by summary() are:
Early group: time.fE: 83.46
Late group: time.fL: 71.30

Fitting a heterogeneous slope regression: time.f:intensity
This model has groups with different intercepts and different slopes. The model
statement includes time.f to generate different intercepts for each group. We also
need the interaction (time by intensity) term to generate different slopes for each
group. R can create that interaction variable automatically. The syntax is the two
variable names separated by a : without any spaces.

Because models with many variables may have many interactions, R provides a
short-hand for “variables and their interactions”. That is time.f*intensity,
which R expands into time.f intensity time.f:intensity, i.e., the two vari-
ables and their interaction. The result in light.lm2b (using time.f*intensity) is
identical to that in light.lm2 (using time.f + intensity + time.f:intensity)

heterogeneous slope regression, with more interpretable coefficients
light.lm3 <- lm(flowers ~ -1 + time.f + time.f:intensity, data=light)

We get group-specific intercepts and slopes by suppressing both the overall inter-

4

cept and the overall slope. We suppress the overall intercept by adding -1 to the
model equation (just as done above). We suppress the overall slope by writing a
model without intensity.

The results from summary() give us the following equations (rounding coefficients
a bit) for the fitted lines:
Early group: Ŷi = 83.15 − 0.0399intensity
Late group: Ŷi = 71.62 − 0.0411intensity

5

