
meat.r: Explanation of code

Goals of code:

• Calculating confidence intervals on model parameters

• Estimating mean Y at a specified X

• Creating data frames with specified X values

• Data frames, matrices, and lists

• Calculating confidence and prediction intervals

• Analyzing a subset of data

• Only printing a few observations

• Overlaying predicted values

• ANOVA lack of fit test

This document continues the analysis of the meat pH data set.

The initial commands in meat.r read the meat.txt file, create a new variable called logtime, fit the
regression line, and predict Y at specified X values. The meat0 explanation document explains this.

Information provided by summary() of an lm() object: summary(meat.lm)
If you use summary() on the object created by lm(), you get a lot of information. I don’t find the
first block of results (a five number summary of the residuals) very useful. The second block of
results gives you the estimated coefficients, their se’s, T values for the test of parameter = 0 and
the associate p-value for each parameter. Again, the slope is labeled by the name of the associated
X variable.

The residual se is the pooled sd (
√

MSE). The rest of the numbers can be ignored or will be
discussed later.

Calculating confidence intervals on model parameters: confint()
The confint() function calculates confidence intervals on model parameters. It is especially useful for
regression models because the model parameters are easily interpretable. The required argument is
the name of the model fit. By default, intervals are 95% coverage and calculated for all parameters.
You can specify a parms= argument to only report intervals for selected parameters and level= to
change the coverage (expressed as a number between 0 and 1, not a percentage).

Predicting Y at “old” and “new” X values: predict()
The predict() and resid() functions can be used to extract predicted values for X values in the data
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set used to fit the regression. This gives you the residual plot that we’ve used to assess assumptions.
Adding newdata= to the predict() call gives you predictions at new X values.
Note: there are no residuals at new X values, because there aren’t any observed Y values there.

Additional arguments to predict() request additional results. se.fit=T requests standard errors for
the predicted mean. interval=’confidence’ requests a confidence interval for the predicted mean.
interval=’prediction’ requests a prediction interval for an individual observation. Confidence
and prediction intervals are discussed in detail further down.

Alternate ways to specifying many X values to predict at: data.frame()
Using newdata= requires a data frame with the desired X values. There are various ways to construct
this. The meat0 code showed one way. The meat code repeats this and shows two more ways to
specify X values. They create slightly different sets of X values. You only need one of these.

c(1,1.5,2,2.5,3,3.5,4,4.5,5):
The c() function concatenates (hence the c) values to make a vector. c() can be used anywhere you
need to create or specify a vector of values. The values are separated by commas.
seq(1, 8, 0.25):
The seq() function generates a sequence of values. The first two arguments are the starting and
ending values. The third is the step. If the step is omitted, e.g., seq(1,8), a step of 1 is assumed.

1:8:
The 1:8 in the third use of data.frame() is a shortcut way to generate a sequence of integers from
the starting to ending value. The code then computes the logtime variable, as we‘ve done before.

Data frames, matrices, and lists:
You need to know a bit about the various ways R will store information, because some of the
functions we’re about to use deliver results in novel ways.

R provides many ways to store information. So far, we’ve met scalars (e.g., 5) and data frames, and
we’ve just met vectors (e.g., c(1, 2, 4, 8)). A matrix has rows and columns, just like a data frame, but
the entire matrix is either numeric or character. A data frame can have some columns that contain
numbers and other columns that contain character strings. If a data frame with both numbers and
character strings was converted to a matrix, it would become a matrix of character strings and all
the numbers would be converted to character strings. The as.matrix() function converts another
type of object into a matrix. The code involving test, test2, and testm demonstrates the difference
between a data frame and a matrix.

You can access individual rows or columns by subscripting the matrix, just like you would subscript
a data frame. Subscripts go in single square brackets. A matrix has two subscripts, which are
separated by a comma. The first subscript indicates rows, the second indicates columns. A negative
number omits the specified row(s) or column(s). If a subscript is omitted, e.g., [,1] , all rows or
columns are selected. So [,1] will extract the first column (and all rows). You can also subscript
vectors (only one index, so no comma) and data frames (rows and columns). If you omit the comma,
the matrix is subscripted as if it were one long vector composed of stacked columns. You probably
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want to specify a comma.

The names() function extracts the column names from a data frame. If you try names() on a matrix,
the result is nothing (NULL). The dimnames() function extracts row and column names from a
matrix. You can also use dimnames() on a data frame; the row names are generated automatically
by R. When you run the code, you‘ll see that the default for a matrix is to have column names but
no row names.

The output from dimnames() is a list, which is a collection of related pieces of information. Unlike a
data frame, in which all columns must be the same length, the components of a list can be different
sizes, shapes, or types of data. You can have lists of lists and even lists of lists of lists.

A list can be recognized by either double square brackets [[ ]] or by $ name followed by infor-
mation. The output from dimnames() is a list with two elements. The first is the vector of row
names; the second is the vector of column names. When printed as [[1]], the components of the
list are unnamed. You can access each component by subscripting in double square brackets, e.g.,
temp[[2]].

Components of a named list, such as produced by predict() in the next section, can be accessed by
number or by name. testlist is a list with two components, named a and b. Both testlist$a

and testlist[[1]] refer to the first component. If referring to list elements by name seems like
referring to columns in a data frame, that‘s because a data frame shares many of the characteristics
of a list and also many characteristics of a matrix. A data frame just has a regular structure than
a list usually doesn‘t have.

Calculating confidence or prediction intervals: predict(, interval=)

The predict() function returns predicted values. The required argument is the name of a saved
model fit (e.g., meat.lm). The result is a vector of predicted values at each of the X’s in the original
data set. These are often more useful (e.g., for drawing plots) if you save the predictions into the
original data frame. This works because there is one prediction for each observation in the data
frame.

Predictions are made for new X values not in the data frame when newdata= is specified. The
argument to newdata= is the name of a data frame with new values for the X variable(s). The new
data can have additional variables, which are ignored. But, it must have a column (or columns)
with the same names as the variable(s) used to fit the model. We created meat.new at the beginning
of today’s lab. Again, it is often useful to store these predictions in the newdata data frame (not
the original data frame!). You almost certainly can’t save the new predictions in the original data
frame because the number of predictions probably doesn’t match the number of observations. It
does match the number of rows of new X values.

predict() has optional arguments that request more information about each predicted value (either
for X’s in the original data frame or a newdata= data frame). The se.fit=T argument requests
standard errors for each predicted value. The interval=’confidence’ argument requests a 95%
confidence interval for the predicted values. Adding level= with a number between 0 and 1 changes
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the coverage to the specified value. Changing to interval=’prediction’ gives you prediction
intervals instead of confidence intervals.

The output from predict() is a vector when all you request are predictions. If you ask for an
interval, you get a matrix. The first column, fit has the predictions, the 2 additional columns:
lwr and upr have the lower and upper bounds of your interval (confidence or prediction) When you
add se.fit=T to request standard errors, the result is a list. The $fit component is the vector
of predicted (fitted) values or matrix of predicted values + interval The $se.fit component is the
vector of standard errors. You can extract the pieces you want by indexing or subscripting the list
or matrix as described above.

Analyzing a subset of the data: subset() or subset=
R provides a couple of ways to restrict an analysis to a subset of the data. If you want to use a
subset many times (i.e., many analyses or plots using the same subset), I find it easier to create a
second data frame with the desired subset of data. If you only want to do one analysis, it can be
easier to specify that subset in the analysis.

To create a new data frame with a subset of values: There are two ways: selecting rows, or using
subset(). I illustrate subset(). The first argument is a data frame; the second argument specifies
the rows to keep, using a logical operator. The example, subset(meat, time <= 6) starts with
all rows of the meat data frame and keeps only those where time is less than or equal to 6. The
logical expression is evaluated in the data frame, so you don’t need to write meat$time to specify
where to find the time variable. You can save the subset in a new data frame then use that subset
as the data= for an analysis. Saving a new data frame is the best approach when you want to use
that subset multiple times.

If you only want to use the subset once, the best is to create it temporarily inside lm(). Add subset=
logical operation specifying rows to keep inside the lm(). Again, the expression is evaluated in the
data frame, so you don‘t need to write subset=(meat$time <= 6).

My practice is to put the logical expression inside () just so R doesn‘t get confused.

Logical operators:
R provides an extensive list of logical operators. These include
Symbol meaning notes
== equals requires two equals signs
< less than
> greater than
<= less than or equal
>= greater than or equal
!= not equal
%in% in followed by a vector of values, e.g. c(1, 3, 6)

will be true if first argument matches any of the second

Only printing a few observations: head()
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Sometimes, I want to print a few observations in a data set to get variable names (e.g., after reading
a data set) or check for gross errors. The head() function prints the first six rows of a data frame,
matrix, or vector. tail() prints the last six rows.

Overlaying observations and predicted values - base graphics: plot() followed by lines()

For all this section, I use time as the X variable. That draws curved lines. If you replace time by
logtime, you get the straight lines fitted by the regression.

The first plot only adds the predicted line. We have previously used plot() to plot data. You can
follow plot() with commands that add stuff to the plot. The lines() function draws lines (as connect
the dots, so it usually helps to to have observations in sorted order). The arguments to lines() are
the X and Y information.

The second plot adds lines for the interval. Additional arguments modify the appearance of the
line. The first lines() command adds the fitted line, drawn as a solid black line. The second and
third adds the lower and upper prediction limits as a dashed line (lty=2, where lty is “line type”).
The default line type is lty=1. The legend() function adds a legend to the plot. The first argument
is the location. All the rest can be in any order and specify what to put on the plot. I prefer legends
without boxes; bty=’n’ (box type) suppresses the box. I want legends for the two line types, so I
specify two line types in lty= and my legend as a vector of character strings in legend=. If you
used pch= and legend=, you would label points in the legend. The help file for legend gives you a
long list of options.

Overlaying observations and predicted values - ggplot graphics:
I show the plot of data + predicted lines and two ways to add lines for the interval.

The ggplot() command sets up the plot. Since it only has an aes() component, it doesn’t draw
anything. That setup is saved so we can add components.

The next few lines, p + geom_point() + geom_line() add points and a line to the plot. The
geom_point() uses the aes() defined in p. The line uses a new data set (the prediction points and
fit information), so it needs a new aes, mapping= is not strictly necessary, but it never hurts.

The first way to add lines for the interval to this plot is just to add more geom_lines() components.
Each one specifies the Y variable to be plotted. There is a linetype= option to change the style of
the line, but I couldn’t get it to work.

The second way to add lines is to create a new data set with multiple rows, each with the information
for one type of line and a variable indicating the type. This can be constructed various ways, e.g.
by pivot_longer() in the dplyr library. Because we also want copies of the X variable, I find it
easier to construct the new data set “manually”. The geom_line() command to plot all 3 lines
specifies the name of the variable indicating the type and the linestyle for each type.

ANOVA lack of fit test: anova()
To construct the ANOVA lack of fit test, we need to fit two analyses using X = time. The regression

5



treats X as continuous; the ANOVA treats X as a factor. My practice is to create a copy of the X
variable that is a factor variable. time.f is that factor version of the time variable. We will use this
variable to indicate groups, each with its own mean, so it doesn’t matter whether the groups are
defined by time or logtime.

We can compare the fit of the regression and the fit of the ANOVA model in two different ways.

1. Fit both models, then use anova() to compare the two fits. That is done by providing two
models to anova(). If you wanted to sequentially compare more than two models (e.g., a simple
linear regression, a quadratic regression, then an ANOVA fit), you provide three arguments
to anova().

2. Fit one model with both terms, e.g., lm(ph ~ logtime + time.f) , with a + separating the
two terms. Passing the output from that fit to anova() gives you the sequential change in fit
as each term is added to the model.

Note: If the first variable in the model is the factor variable, R refuses to fit the second term. If
you specify two models to anova() and the factor variable is first, the changes in df and SS are both
negative. Fix by reversing the order of the variables in the lm() formula or the order of the models
in anova()

Calibration:
Base R doesn’t provide any way to do the calibration computations. The best way is get the
numbers you need (the estimate, its standard error) from the lm() output, then use a calculator or
use R as a calculator. My guess is that there is an R package for fitting and using calibration curves.
Searching for calibration only brings up a completely different use of calibration and calibration
curve.
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