
meat.r: Explanation of code

Goals of code:

• Fitting a regression line

• Calculating confidence intervals on model parameters

• Estimating mean Y at a specified X

• Creating data frames with specified X values

• Data frames, matrices, and lists

• Calculating confidence and prediction intervals

• Analyzing a subset of data

• Only printing a few observations

• Overlaying predicted values

• ANOVA lack of fit test

The initial commands read the meat.txt file and create a new variable called logtime.

Fitting a regression line: lm()
The lm() function is the workhorse R model fitting function. When the X variable (right hand side
of the ~ is not a factor, lm() fits a regression line.

The command meat.lm <- lm(ph~logtime, data=meat) will fit a regression model to predict y
= ph from x = logtime, where both variables are in the data frame called meat. The result is stored
in the meat.lm object.

If you print the object (meat.lm), you see what was done to create meat.lm and the estimated
coefficients. Intercept is the intercept (β0) and logtime is the regression slope (β1). Slope coefficients
are always labeled by the name of the associated X variable. That will be very useful when we have
more than one X variable in a model.

If you use summary() on the output object, you get a lot more information. I don’t find the first
block of results (a five number summary of the residuals) very useful. The second block of results
gives you the estimated coefficients, their se’s, T values for the test of parameter = 0 and the
associate p-value for each parameter. Again, the slope is labeled by the name of the associated X
variable.

The residual se is the pooled sd (
√

MSE). The rest of the numbers can be ignored or will be
discussed later.

1

The predict() and resid() functions can be used to extract predicted values for X values in the data
set used to fit the regression. This gives you the residual plot that we’ve used to assess assumptions.

Calculating confidence intervals on model parameters: confint()
The confint() function calculates confidence intervals on model parameters. It is especially useful
for regression models because the model parameters are easily interpretable. The required argument
is the name of the model fit. By default, intervals are calculated for all parameters and are 95%.
You can specify a parms= argument to only report intervals for selected parameters and level= to
change the coverage (expressed as a number between 0 and 1, not a percentage).

Estimating mean Y for a specified X: predict() with a newdata= argument

The predict() function can provide predicted values and associated information for X values not in
the data set. This is done by providing a new data frame with the desired X values. That new
data frame is specified by the newdata= argument. This must be a data frame (you can’t just say:
newdata=log(5). Sorry. And, the name in the data frame must match the variable name in the
model.

The data.frame() function creates a data frame from a set of values. In this case, we want to predict
for time = 5 hours, so logtime is log(5).

This data frame must include a column with the same variable name as that in the data frame
used to fit the model. The logtime= piece specifies the variable name. The log(5) specifies the
value. That data frame is printed, then used as the value of the newdata= argument. The result
of predict() is the predicted value. As always, this can be stored in a variable or in a data frame if
you want to save the result.

Additional arguments to predict() request additional results. se.fit=T requests standard errors for
the predicted mean. interval=’confidence’ requests a confidence interval for the predicted mean.
interval=’prediction’ requests a prediction interval for an individual observation. Confidence
and prediction intervals are discussed in detail further down.

Specifying many X values to predict at: data.frame()
You can extend what you just did to many X values. In all cases, you need a data frame with a
named vector specifying the desired values. The three examples of data illustrate three ways to
produce the desired data frame. They create slightly different sets of X values. You only need one
of these.

c(1,1.5,2,2.5,3,3.5,4,4.5,5):
The c() function concatenates (hence the c) values to make a vector. c() can be used anywhere you
need to create or specify a vector of values. The values are separated by commas.
seq(1, 8, 0.25):
The seq() function generates a sequence of values. The first two arguments are the starting and
ending values. The third is the step. If the step is omitted, e.g., seq(1,8), a step of 1 is assumed.

2

1:8:
The 1:8 in the third use of data.frame() is a shortcut way to generate a sequence of integers from
the starting to ending value. The code then computes the logtime variable, as we‘ve done before.

Data frames, matrices, and lists:
You need to know a bit about the various ways R will store information, because some of the
functions we’re about to use delivery results in novel ways.

R provides many ways to store information. So far, we’ve met scalars (e.g., 5) and data frames, and
we’ve just met vectors (e.g., c(1, 2, 4, 8)). A matrix has rows and columns, just like a data frame, but
the entire matrix is either numeric or character. A data frame can have some columns that contain
numbers and other columns that contain character strings. If a data frame with both numbers and
character strings was converted to a matrix, it would become a matrix of character strings and all
the numbers would be converted to character strings. The as.matrix() function converts another
type of object into a matrix. The code involving test, test2, and testm demonstrates the difference
between a data frame and a matrix.

You can access individual rows or columns by subscripting the matrix, just like you would subscript
a data frame. Subscripts go in single square brackets. A matrix has two subscripts, which are
separated by a comma. The first subscript indicates rows, the second indicates columns. A negative
number omits the specified row(s) or column(s). If a subscript is omitted, e.g., [,1] , all rows or
columns are selected. So [,1] will extract the first column (and all rows). You can also subscript
vectors (only one index, so no comma) and data frames (rows and columns). If you omit the comma,
the matrix is subscripted as if it were one long vector composed of stacked columns. You probably
want to specify a comma.

The names() function extracts the column names from a data frame. If you try names() on a matrix,
the result is nothing (NULL). The dimnames() function extracts row and column names from a
matrix. You can also use dimnames() on a data frame; the row names are generated automatically
by R. When you run the code, you‘ll see that the default for a matrix is to have column names but
no row names.

The output from dimnames() is a list, which is a collection of related pieces of information. Unlike a
data frame, in which all columns must be the same length, the components of a list can be different
sizes, shapes, or types of data. You can have lists of lists and even lists of lists of lists.

A list can be recognized by either double square brackets [[]] or by $ name followed by infor-
mation. The output from dimnames() is a list with two elements. The first is the vector of row
names; the second is the vector of column names. When printed as [[1]], the components of the
list are unnamed. You can access each component by subscripting in double square brackets, e.g.,
temp[[2]].

Components of a named list, such as produced by predict() in the next section, can be accessed by
number or by name. testlist is a list with two components, named a and b. Both testlist$a

and testlist[[1]] refer to the first component. If referring to list elements by name seems like

3

referring to columns in a data frame, that‘s because a data frame shares many of the characteristics
of a list and also many characteristics of a matrix. A data frame just has a regular structure than
a list usually doesn‘t have.

Calculating confidence or prediction intervals: predict(, interval=)

The predict() function returns predicted values. The required argument is the name of a saved
model fit (e.g., meat.lm). The result is a vector of predicted values at each of the X’s in the original
data set. These are often more useful (e.g., for drawing plots) if you save the predictions into the
original data frame. This works because there is one prediction for each observation in the data
frame.

Predictions are made for new X values not in the data frame when newdata= is specified. The
argument to newdata= is the name of a data frame with new values for the X variable(s). The new
data can have additional variables, which are ignored. But, it must have a column (or columns)
with the same names as the variable(s) used to fit the model. We created meat.new at the beginning
of today’s lab. Again, it is often useful to store these predictions in the newdata data frame (not
the original data frame!). You almost certainly can’t save the new predictions in the original data
frame because the number of predictions probably doesn’t match the number of observations. It
does match the number of rows of new X values.

predict() has optional arguments that request more information about each predicted value (either
for X’s in the original data frame or a newdata= data frame). The se.fit=T argument requests
standard errors for each predicted value. The interval=’confidence’ argument requests a 95%
confidence interval for the predicted values. Adding level= with a number between 0 and 1 changes
the coverage to the specified value. Changing to interval=’prediction’ gives you prediction
intervals instead of confidence intervals.

The output from predict() is a vector when all you request are predictions. When you add
se.fit=T to request standard errors, the result is a list. The $fit component is the vector of
predicted (fitted) values. The $se.fit component is the vector of standard errors. When you
request an interval, the output is a matrix, with the 2nd and 3rd columns being the endpoints of
the requested interval. (The first column is the predicted value). If you request both the standard
error and an interval, you get a list with the $fit component as a matrix. You can extract the
pieces you want by indexing or subscripting the list or matrix as described above.

Analyzing a subset of the data: subset() or subset=
R provides a couple of ways to restrict an analysis to a subset of the data. If you want to use a
subset many times (i.e., many analyses or plots using the same subset), I find it easier to create a
second data frame with the desired subset of data. If you only want to do one analysis, it can be
easier to specify that subset in the analysis.

To create a new data frame with a subset of values: There are two ways: selecting rows, or using
subset(). I illustrate subset(). The first argument is a data frame; the second argument specifies
the rows to keep, using a logical operator. The example, subset(meat, time <= 6) starts with all
rows of the meat data frame and keeps only those where time is less than or equal to 6. The logical

4

expression is evaluated in the data frame, so you don’t need to write meat$time to specify where to
find the time variable. To specify the subset as part of an analysis, add subset= logical operation
specifying rows to keep. Again, the expression is evaluated in the data frame, so you don‘t need to
write subset=(meat$time <= 6).

My practice is to put the logical expression inside () just so R doesn‘t get confused.

Logical operators:
R provides an extensive list of logical operators. These include
Symbol meaning notes
== equals requires two equals signs
< less than
> greater than
<= less than or equal
>= greater than or equal
!= not equal
%in% in followed by a vector of values, e.g. c(1, 3, 6)

will be true if first argument matches any of the second

Only printing a few observations: head()
Sometimes, I want to print a few observations in a data set to get variable names (e.g., after reading
a data set) or check for gross errors. The head() function prints the first six rows of a data frame,
matrix, or vector. tail() prints the last six rows.

Overlaying observations and predicted values: plot() followed by lines()

We have previously used plot() to plot data. You can follow plot() with commands that add stuff
to the plot. The lines() function draws lines (as connect the dots, so it usually helps to to have
observations in sorted order). The arguments to lines() are the X and Y information. Additional
arguments modify the appearance of the line. The first lines() command adds the fitted line, drawn
as a solid black line. fitted line. The second and third adds the lower and upper prediction limits as
a dashed line (lty=2, where lty is “line type”). The default line type is lty=1. The legend() function
adds a legend to the plot. The first argument is the location. All the rest can be in any order and
specify what to put on the plot. I prefer legends without boxes; bty=’n’ (box type) suppresses the
box. I want legends for the two line types, so I specify two line types in lty= and my legend as a
vector of character strings in legend=. If you used pch= and legend=, you would label points in
the legend. The help file for legend gives you a long list of options.

ANOVA lack of fit test: anova()
To construct the ANOVA lack of fit test, we need to fit two analyses using X = time. The regression
treats X as continuous; the ANOVA treats X as a factor. My practice is to create a copy of the X
variable that is a factor variable. time.f is that factor version of the time variable. We will use this
variable to indicate groups, each with its own mean, so it doesn’t matter whether the groups are
defined by time or logtime.

We can compare the fit of the regression and the fit of the ANOVA model in two different ways.

5

1. Fit both models, then use anova() to compare the two fits. That is done by providing two
models to anova(). If you wanted to sequentially compare more than two models (e.g., a simple
linear regression, a quadratic regression, then an ANOVA fit), you provide three arguments
to anova().

2. Fit one model with both terms, e.g., lm(ph ~ logtime + time.f) , with a + separating the
two terms. Passing the output from that fit to anova() gives you the sequential change in fit
as each term is added to the model.

Note: If the first variable in the model is the factor variable, R refuses to fit the second term. If
you specify two models to anova() and the factor variable is first, the changes in df and SS are both
negative. Fix by reversing the order of the variables in the lm() formula or the order of the models
in anova()

6

